antalvdb commited on
Commit
ec49ce0
·
1 Parent(s): 6a423be

Upload 14 files

Browse files
README.md CHANGED
@@ -3,44 +3,31 @@ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: bart-base-spelling-nl-1m
7
  results: []
8
  ---
9
 
10
- This model is a Dutch fine-tuned version of
11
- [facebook/bart-base](https://huggingface.co/facebook/bart-base).
12
 
13
- It achieves the following results on the evaluation set:
14
 
15
- - Loss: 0.0221
16
- - Cer: 0.0145
 
 
17
 
18
  ## Model description
19
 
20
- This is a text-to-text fine-tuned version of
21
- [facebook/bart-base](https://huggingface.co/facebook/bart-base)
22
- trained on spelling correction. It leans on the excellent work by
23
- Oliver Guhr ([github](https://github.com/oliverguhr/spelling),
24
- [huggingface](https://huggingface.co/oliverguhr/spelling-correction-english-base)). Training
25
- was performed on an AWS EC2 instance (g5.xlarge) on a single GPU.
26
 
27
  ## Intended uses & limitations
28
 
29
- The intended use for this model is to be a component of the
30
- [Valkuil.net](https://valkuil.net) context-sensitive spelling
31
- checker.
32
 
33
  ## Training and evaluation data
34
 
35
- The model was trained on a Dutch dataset composed of 2,964,203 (nearly
36
- 3m) lines of text from three public Dutch sources, downloaded from the
37
- [Opus corpus](https://opus.nlpl.eu/):
38
-
39
- - nl-europarlv7.1m.txt (1,000,000 lines)
40
- - nl-opensubtitles2016.1m.txt (1,000,000 lines)
41
- - nl-wikipedia.txt (964,203 lines)
42
-
43
- Together these texts comprise 45,308,056 tokens.
44
 
45
  ## Training procedure
46
 
@@ -61,190 +48,315 @@ The following hyperparameters were used during training:
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Cer |
63
  |:-------------:|:-----:|:------:|:---------------:|:------:|
64
- | 0.2824 | 0.01 | 1000 | 0.2129 | 0.9219 |
65
- | 0.1971 | 0.02 | 2000 | 0.1600 | 0.9217 |
66
- | 0.171 | 0.03 | 3000 | 0.1273 | 0.9217 |
67
- | 0.1586 | 0.04 | 4000 | 0.1110 | 0.9216 |
68
- | 0.1288 | 0.05 | 5000 | 0.0991 | 0.9214 |
69
- | 0.1338 | 0.06 | 6000 | 0.0910 | 0.9215 |
70
- | 0.1279 | 0.08 | 7000 | 0.0831 | 0.9215 |
71
- | 0.1147 | 0.09 | 8000 | 0.0789 | 0.9215 |
72
- | 0.1091 | 0.1 | 9000 | 0.0769 | 0.9216 |
73
- | 0.0935 | 0.11 | 10000 | 0.0700 | 0.9214 |
74
- | 0.0963 | 0.12 | 11000 | 0.0678 | 0.9215 |
75
- | 0.0969 | 0.13 | 12000 | 0.0654 | 0.9214 |
76
- | 0.0957 | 0.14 | 13000 | 0.0627 | 0.9215 |
77
- | 0.0886 | 0.15 | 14000 | 0.0644 | 0.9215 |
78
- | 0.0911 | 0.16 | 15000 | 0.0604 | 0.9215 |
79
- | 0.0955 | 0.17 | 16000 | 0.0595 | 0.9215 |
80
- | 0.0875 | 0.18 | 17000 | 0.0587 | 0.9213 |
81
- | 0.0879 | 0.19 | 18000 | 0.0576 | 0.9214 |
82
- | 0.079 | 0.21 | 19000 | 0.0550 | 0.9213 |
83
- | 0.0808 | 0.22 | 20000 | 0.0536 | 0.9215 |
84
- | 0.0684 | 0.23 | 21000 | 0.0536 | 0.9214 |
85
- | 0.0789 | 0.24 | 22000 | 0.0530 | 0.9214 |
86
- | 0.088 | 0.25 | 23000 | 0.0524 | 0.9215 |
87
- | 0.076 | 0.26 | 24000 | 0.0519 | 0.9214 |
88
- | 0.0714 | 0.27 | 25000 | 0.0506 | 0.9213 |
89
- | 0.0664 | 0.28 | 26000 | 0.0495 | 0.9213 |
90
- | 0.0791 | 0.29 | 27000 | 0.0492 | 0.9215 |
91
- | 0.0702 | 0.3 | 28000 | 0.0485 | 0.9215 |
92
- | 0.0709 | 0.31 | 29000 | 0.0493 | 0.9213 |
93
- | 0.0676 | 0.32 | 30000 | 0.0480 | 0.9214 |
94
- | 0.0692 | 0.34 | 31000 | 0.0468 | 0.9215 |
95
- | 0.0633 | 0.35 | 32000 | 0.0473 | 0.9213 |
96
- | 0.0732 | 0.36 | 33000 | 0.0455 | 0.9213 |
97
- | 0.0809 | 0.37 | 34000 | 0.0455 | 0.9214 |
98
- | 0.0562 | 0.38 | 35000 | 0.0451 | 0.9214 |
99
- | 0.0715 | 0.39 | 36000 | 0.0440 | 0.9214 |
100
- | 0.0596 | 0.4 | 37000 | 0.0441 | 0.9214 |
101
- | 0.0534 | 0.41 | 38000 | 0.0430 | 0.9213 |
102
- | 0.0657 | 0.42 | 39000 | 0.0427 | 0.9214 |
103
- | 0.0643 | 0.43 | 40000 | 0.0441 | 0.9212 |
104
- | 0.0579 | 0.44 | 41000 | 0.0414 | 0.9213 |
105
- | 0.0695 | 0.45 | 42000 | 0.0430 | 0.9212 |
106
- | 0.0566 | 0.47 | 43000 | 0.0413 | 0.9212 |
107
- | 0.0646 | 0.48 | 44000 | 0.0415 | 0.9213 |
108
- | 0.0573 | 0.49 | 45000 | 0.0410 | 0.9212 |
109
- | 0.0568 | 0.5 | 46000 | 0.0406 | 0.9213 |
110
- | 0.065 | 0.51 | 47000 | 0.0405 | 0.9213 |
111
- | 0.063 | 0.52 | 48000 | 0.0396 | 0.9213 |
112
- | 0.0654 | 0.53 | 49000 | 0.0397 | 0.9213 |
113
- | 0.0506 | 0.54 | 50000 | 0.0391 | 0.9212 |
114
- | 0.0573 | 0.55 | 51000 | 0.0382 | 0.9213 |
115
- | 0.0569 | 0.56 | 52000 | 0.0381 | 0.9214 |
116
- | 0.0597 | 0.57 | 53000 | 0.0381 | 0.9212 |
117
- | 0.0543 | 0.58 | 54000 | 0.0374 | 0.9213 |
118
- | 0.057 | 0.59 | 55000 | 0.0381 | 0.9213 |
119
- | 0.058 | 0.61 | 56000 | 0.0380 | 0.9212 |
120
- | 0.0481 | 0.62 | 57000 | 0.0366 | 0.9213 |
121
- | 0.0581 | 0.63 | 58000 | 0.0367 | 0.9212 |
122
- | 0.0521 | 0.64 | 59000 | 0.0363 | 0.9213 |
123
- | 0.0543 | 0.65 | 60000 | 0.0358 | 0.9212 |
124
- | 0.0594 | 0.66 | 61000 | 0.0359 | 0.9214 |
125
- | 0.0479 | 0.67 | 62000 | 0.0354 | 0.9212 |
126
- | 0.0512 | 0.68 | 63000 | 0.0357 | 0.9211 |
127
- | 0.0488 | 0.69 | 64000 | 0.0341 | 0.9213 |
128
- | 0.0485 | 0.7 | 65000 | 0.0346 | 0.9213 |
129
- | 0.052 | 0.71 | 66000 | 0.0343 | 0.9213 |
130
- | 0.0427 | 0.72 | 67000 | 0.0341 | 0.9212 |
131
- | 0.0502 | 0.74 | 68000 | 0.0343 | 0.9211 |
132
- | 0.0434 | 0.75 | 69000 | 0.0337 | 0.9213 |
133
- | 0.0579 | 0.76 | 70000 | 0.0337 | 0.9213 |
134
- | 0.0534 | 0.77 | 71000 | 0.0330 | 0.9212 |
135
- | 0.0437 | 0.78 | 72000 | 0.0334 | 0.9212 |
136
- | 0.05 | 0.79 | 73000 | 0.0332 | 0.9213 |
137
- | 0.043 | 0.8 | 74000 | 0.0329 | 0.9212 |
138
- | 0.0554 | 0.81 | 75000 | 0.0323 | 0.9212 |
139
- | 0.0418 | 0.82 | 76000 | 0.0326 | 0.9212 |
140
- | 0.0461 | 0.83 | 77000 | 0.0326 | 0.9212 |
141
- | 0.0435 | 0.84 | 78000 | 0.0319 | 0.9212 |
142
- | 0.0453 | 0.85 | 79000 | 0.0317 | 0.9212 |
143
- | 0.0434 | 0.87 | 80000 | 0.0318 | 0.9212 |
144
- | 0.0466 | 0.88 | 81000 | 0.0321 | 0.9212 |
145
- | 0.0461 | 0.89 | 82000 | 0.0316 | 0.9212 |
146
- | 0.0381 | 0.9 | 83000 | 0.0311 | 0.9213 |
147
- | 0.0455 | 0.91 | 84000 | 0.0306 | 0.9212 |
148
- | 0.0446 | 0.92 | 85000 | 0.0315 | 0.9212 |
149
- | 0.0532 | 0.93 | 86000 | 0.0305 | 0.9212 |
150
- | 0.052 | 0.94 | 87000 | 0.0305 | 0.9212 |
151
- | 0.0353 | 0.95 | 88000 | 0.0305 | 0.9211 |
152
- | 0.0469 | 0.96 | 89000 | 0.0304 | 0.9212 |
153
- | 0.0387 | 0.97 | 90000 | 0.0303 | 0.9212 |
154
- | 0.0478 | 0.98 | 91000 | 0.0302 | 0.9212 |
155
- | 0.0395 | 1.0 | 92000 | 0.0299 | 0.9212 |
156
- | 0.0387 | 1.01 | 93000 | 0.0290 | 0.9212 |
157
- | 0.0356 | 1.02 | 94000 | 0.0287 | 0.9212 |
158
- | 0.0381 | 1.03 | 95000 | 0.0295 | 0.9212 |
159
- | 0.0386 | 1.04 | 96000 | 0.0284 | 0.9213 |
160
- | 0.038 | 1.05 | 97000 | 0.0293 | 0.9212 |
161
- | 0.0346 | 1.06 | 98000 | 0.0284 | 0.9212 |
162
- | 0.0357 | 1.07 | 99000 | 0.0285 | 0.9212 |
163
- | 0.0446 | 1.08 | 100000 | 0.0287 | 0.9211 |
164
- | 0.0424 | 1.09 | 101000 | 0.0284 | 0.9213 |
165
- | 0.0357 | 1.1 | 102000 | 0.0282 | 0.9211 |
166
- | 0.0413 | 1.11 | 103000 | 0.0282 | 0.9211 |
167
- | 0.0348 | 1.12 | 104000 | 0.0279 | 0.9212 |
168
- | 0.0363 | 1.14 | 105000 | 0.0279 | 0.9212 |
169
- | 0.0329 | 1.15 | 106000 | 0.0282 | 0.9211 |
170
- | 0.0438 | 1.16 | 107000 | 0.0279 | 0.9212 |
171
- | 0.037 | 1.17 | 108000 | 0.0274 | 0.9212 |
172
- | 0.0311 | 1.18 | 109000 | 0.0278 | 0.9212 |
173
- | 0.0297 | 1.19 | 110000 | 0.0275 | 0.9212 |
174
- | 0.0323 | 1.2 | 111000 | 0.0271 | 0.9212 |
175
- | 0.0387 | 1.21 | 112000 | 0.0275 | 0.9212 |
176
- | 0.0366 | 1.22 | 113000 | 0.0269 | 0.9211 |
177
- | 0.0345 | 1.23 | 114000 | 0.0269 | 0.9211 |
178
- | 0.0389 | 1.24 | 115000 | 0.0261 | 0.9211 |
179
- | 0.0381 | 1.25 | 116000 | 0.0265 | 0.9211 |
180
- | 0.0324 | 1.27 | 117000 | 0.0265 | 0.9211 |
181
- | 0.0345 | 1.28 | 118000 | 0.0260 | 0.9212 |
182
- | 0.032 | 1.29 | 119000 | 0.0260 | 0.9211 |
183
- | 0.0359 | 1.3 | 120000 | 0.0259 | 0.9211 |
184
- | 0.0347 | 1.31 | 121000 | 0.0259 | 0.9212 |
185
- | 0.0334 | 1.32 | 122000 | 0.0253 | 0.9211 |
186
- | 0.0297 | 1.33 | 123000 | 0.0260 | 0.9210 |
187
- | 0.0333 | 1.34 | 124000 | 0.0251 | 0.9212 |
188
- | 0.0303 | 1.35 | 125000 | 0.0254 | 0.9211 |
189
- | 0.0292 | 1.36 | 126000 | 0.0250 | 0.9211 |
190
- | 0.0318 | 1.37 | 127000 | 0.0250 | 0.9212 |
191
- | 0.0284 | 1.38 | 128000 | 0.0250 | 0.9211 |
192
- | 0.0311 | 1.4 | 129000 | 0.0248 | 0.9211 |
193
- | 0.0323 | 1.41 | 130000 | 0.0248 | 0.9211 |
194
- | 0.0253 | 1.42 | 131000 | 0.0244 | 0.9211 |
195
- | 0.0287 | 1.43 | 132000 | 0.0246 | 0.9211 |
196
- | 0.0351 | 1.44 | 133000 | 0.0240 | 0.9212 |
197
- | 0.0363 | 1.45 | 134000 | 0.0238 | 0.9211 |
198
- | 0.0264 | 1.46 | 135000 | 0.0240 | 0.9211 |
199
- | 0.0304 | 1.47 | 136000 | 0.0242 | 0.9211 |
200
- | 0.0325 | 1.48 | 137000 | 0.0236 | 0.9212 |
201
- | 0.033 | 1.49 | 138000 | 0.0239 | 0.9211 |
202
- | 0.03 | 1.5 | 139000 | 0.0236 | 0.9211 |
203
- | 0.0256 | 1.51 | 140000 | 0.0235 | 0.9211 |
204
- | 0.0312 | 1.53 | 141000 | 0.0237 | 0.9211 |
205
- | 0.0302 | 1.54 | 142000 | 0.0237 | 0.9211 |
206
- | 0.0227 | 1.55 | 143000 | 0.0232 | 0.9212 |
207
- | 0.0261 | 1.56 | 144000 | 0.0232 | 0.9211 |
208
- | 0.0269 | 1.57 | 145000 | 0.0227 | 0.9211 |
209
- | 0.0312 | 1.58 | 146000 | 0.0228 | 0.9211 |
210
- | 0.0298 | 1.59 | 147000 | 0.0231 | 0.9211 |
211
- | 0.0281 | 1.6 | 148000 | 0.0226 | 0.9212 |
212
- | 0.029 | 1.61 | 149000 | 0.0227 | 0.9211 |
213
- | 0.0324 | 1.62 | 150000 | 0.0225 | 0.9211 |
214
- | 0.0251 | 1.63 | 151000 | 0.0223 | 0.9212 |
215
- | 0.0278 | 1.64 | 152000 | 0.0223 | 0.9211 |
216
- | 0.0284 | 1.65 | 153000 | 0.0224 | 0.9210 |
217
- | 0.0254 | 1.67 | 154000 | 0.0220 | 0.9211 |
218
- | 0.028 | 1.68 | 155000 | 0.0221 | 0.9210 |
219
- | 0.0247 | 1.69 | 156000 | 0.0222 | 0.9211 |
220
- | 0.0295 | 1.7 | 157000 | 0.0218 | 0.9211 |
221
- | 0.0283 | 1.71 | 158000 | 0.0216 | 0.9211 |
222
- | 0.0245 | 1.72 | 159000 | 0.0218 | 0.9211 |
223
- | 0.0249 | 1.73 | 160000 | 0.0216 | 0.9211 |
224
- | 0.0264 | 1.74 | 161000 | 0.0215 | 0.9211 |
225
- | 0.0264 | 1.75 | 162000 | 0.0213 | 0.9211 |
226
- | 0.0306 | 1.76 | 163000 | 0.0212 | 0.9211 |
227
- | 0.0242 | 1.77 | 164000 | 0.0212 | 0.9212 |
228
- | 0.0247 | 1.78 | 165000 | 0.0211 | 0.9211 |
229
- | 0.0227 | 1.8 | 166000 | 0.0211 | 0.9210 |
230
- | 0.0252 | 1.81 | 167000 | 0.0211 | 0.9211 |
231
- | 0.0269 | 1.82 | 168000 | 0.0208 | 0.9211 |
232
- | 0.0256 | 1.83 | 169000 | 0.0209 | 0.9211 |
233
- | 0.0234 | 1.84 | 170000 | 0.0207 | 0.9211 |
234
- | 0.0258 | 1.85 | 171000 | 0.0207 | 0.9211 |
235
- | 0.0282 | 1.86 | 172000 | 0.0205 | 0.9210 |
236
- | 0.0282 | 1.87 | 173000 | 0.0206 | 0.9210 |
237
- | 0.0234 | 1.88 | 174000 | 0.0205 | 0.9211 |
238
- | 0.0222 | 1.89 | 175000 | 0.0204 | 0.9211 |
239
- | 0.0237 | 1.9 | 176000 | 0.0203 | 0.9211 |
240
- | 0.0299 | 1.91 | 177000 | 0.0203 | 0.9211 |
241
- | 0.0246 | 1.93 | 178000 | 0.0203 | 0.9211 |
242
- | 0.0227 | 1.94 | 179000 | 0.0204 | 0.9211 |
243
- | 0.0253 | 1.95 | 180000 | 0.0202 | 0.9211 |
244
- | 0.0197 | 1.96 | 181000 | 0.0202 | 0.9211 |
245
- | 0.0231 | 1.97 | 182000 | 0.0200 | 0.9211 |
246
- | 0.0244 | 1.98 | 183000 | 0.0201 | 0.9211 |
247
- | 0.0259 | 1.99 | 184000 | 0.0200 | 0.9211 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
 
249
 
250
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: bart-base-spelling-nl-2m
7
  results: []
8
  ---
9
 
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # bart-base-spelling-nl-2m
14
 
15
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0248
18
+ - Cer: 0.0133
19
 
20
  ## Model description
21
 
22
+ More information needed
 
 
 
 
 
23
 
24
  ## Intended uses & limitations
25
 
26
+ More information needed
 
 
27
 
28
  ## Training and evaluation data
29
 
30
+ More information needed
 
 
 
 
 
 
 
 
31
 
32
  ## Training procedure
33
 
 
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Cer |
50
  |:-------------:|:-----:|:------:|:---------------:|:------:|
51
+ | 0.277 | 0.01 | 1000 | 0.2337 | 0.9206 |
52
+ | 0.2349 | 0.01 | 2000 | 0.1757 | 0.9204 |
53
+ | 0.1929 | 0.02 | 3000 | 0.1482 | 0.9205 |
54
+ | 0.1686 | 0.03 | 4000 | 0.1314 | 0.9202 |
55
+ | 0.1435 | 0.03 | 5000 | 0.1175 | 0.9203 |
56
+ | 0.1505 | 0.04 | 6000 | 0.1086 | 0.9204 |
57
+ | 0.1438 | 0.05 | 7000 | 0.0984 | 0.9203 |
58
+ | 0.1362 | 0.05 | 8000 | 0.0941 | 0.9203 |
59
+ | 0.1207 | 0.06 | 9000 | 0.0890 | 0.9201 |
60
+ | 0.108 | 0.06 | 10000 | 0.0850 | 0.9203 |
61
+ | 0.1142 | 0.07 | 11000 | 0.0798 | 0.9201 |
62
+ | 0.1081 | 0.08 | 12000 | 0.0757 | 0.9203 |
63
+ | 0.0987 | 0.08 | 13000 | 0.0739 | 0.9201 |
64
+ | 0.1103 | 0.09 | 14000 | 0.0728 | 0.9202 |
65
+ | 0.0961 | 0.1 | 15000 | 0.0678 | 0.9202 |
66
+ | 0.0976 | 0.1 | 16000 | 0.0672 | 0.9202 |
67
+ | 0.0949 | 0.11 | 17000 | 0.0640 | 0.9202 |
68
+ | 0.1026 | 0.12 | 18000 | 0.0635 | 0.9203 |
69
+ | 0.1049 | 0.12 | 19000 | 0.0618 | 0.9201 |
70
+ | 0.0893 | 0.13 | 20000 | 0.0617 | 0.9201 |
71
+ | 0.0834 | 0.14 | 21000 | 0.0582 | 0.9202 |
72
+ | 0.0815 | 0.14 | 22000 | 0.0584 | 0.9202 |
73
+ | 0.0801 | 0.15 | 23000 | 0.0606 | 0.9202 |
74
+ | 0.0764 | 0.15 | 24000 | 0.0591 | 0.9201 |
75
+ | 0.0779 | 0.16 | 25000 | 0.0556 | 0.9201 |
76
+ | 0.0839 | 0.17 | 26000 | 0.0548 | 0.9202 |
77
+ | 0.0811 | 0.17 | 27000 | 0.0532 | 0.9202 |
78
+ | 0.0817 | 0.18 | 28000 | 0.0537 | 0.9202 |
79
+ | 0.0809 | 0.19 | 29000 | 0.0527 | 0.9201 |
80
+ | 0.0812 | 0.19 | 30000 | 0.0512 | 0.9202 |
81
+ | 0.0741 | 0.2 | 31000 | 0.0507 | 0.9201 |
82
+ | 0.0764 | 0.21 | 32000 | 0.0510 | 0.9201 |
83
+ | 0.0741 | 0.21 | 33000 | 0.0494 | 0.9201 |
84
+ | 0.0736 | 0.22 | 34000 | 0.0499 | 0.9201 |
85
+ | 0.0674 | 0.23 | 35000 | 0.0486 | 0.9202 |
86
+ | 0.0775 | 0.23 | 36000 | 0.0489 | 0.9201 |
87
+ | 0.0772 | 0.24 | 37000 | 0.0484 | 0.9202 |
88
+ | 0.073 | 0.25 | 38000 | 0.0487 | 0.9202 |
89
+ | 0.0675 | 0.25 | 39000 | 0.0474 | 0.9200 |
90
+ | 0.0739 | 0.26 | 40000 | 0.0460 | 0.9201 |
91
+ | 0.0694 | 0.26 | 41000 | 0.0478 | 0.9200 |
92
+ | 0.0659 | 0.27 | 42000 | 0.0451 | 0.9201 |
93
+ | 0.0638 | 0.28 | 43000 | 0.0449 | 0.9200 |
94
+ | 0.0704 | 0.28 | 44000 | 0.0447 | 0.9201 |
95
+ | 0.0657 | 0.29 | 45000 | 0.0463 | 0.9201 |
96
+ | 0.0649 | 0.3 | 46000 | 0.0445 | 0.9200 |
97
+ | 0.069 | 0.3 | 47000 | 0.0444 | 0.9201 |
98
+ | 0.0655 | 0.31 | 48000 | 0.0433 | 0.9200 |
99
+ | 0.0592 | 0.32 | 49000 | 0.0439 | 0.9201 |
100
+ | 0.0623 | 0.32 | 50000 | 0.0433 | 0.9201 |
101
+ | 0.074 | 0.33 | 51000 | 0.0419 | 0.9202 |
102
+ | 0.0602 | 0.34 | 52000 | 0.0410 | 0.9202 |
103
+ | 0.0672 | 0.34 | 53000 | 0.0418 | 0.9202 |
104
+ | 0.063 | 0.35 | 54000 | 0.0425 | 0.9200 |
105
+ | 0.0609 | 0.35 | 55000 | 0.0407 | 0.9200 |
106
+ | 0.0583 | 0.36 | 56000 | 0.0399 | 0.9200 |
107
+ | 0.0602 | 0.37 | 57000 | 0.0400 | 0.9201 |
108
+ | 0.0707 | 0.37 | 58000 | 0.0399 | 0.9200 |
109
+ | 0.0628 | 0.38 | 59000 | 0.0401 | 0.9201 |
110
+ | 0.0586 | 0.39 | 60000 | 0.0390 | 0.9201 |
111
+ | 0.061 | 0.39 | 61000 | 0.0403 | 0.9199 |
112
+ | 0.0611 | 0.4 | 62000 | 0.0388 | 0.9201 |
113
+ | 0.0569 | 0.41 | 63000 | 0.0379 | 0.9200 |
114
+ | 0.0577 | 0.41 | 64000 | 0.0382 | 0.9200 |
115
+ | 0.061 | 0.42 | 65000 | 0.0390 | 0.9202 |
116
+ | 0.0605 | 0.43 | 66000 | 0.0381 | 0.9199 |
117
+ | 0.0566 | 0.43 | 67000 | 0.0382 | 0.9200 |
118
+ | 0.0616 | 0.44 | 68000 | 0.0380 | 0.9200 |
119
+ | 0.0666 | 0.45 | 69000 | 0.0381 | 0.9201 |
120
+ | 0.052 | 0.45 | 70000 | 0.0373 | 0.9200 |
121
+ | 0.0576 | 0.46 | 71000 | 0.0376 | 0.9200 |
122
+ | 0.0529 | 0.46 | 72000 | 0.0365 | 0.9200 |
123
+ | 0.0504 | 0.47 | 73000 | 0.0371 | 0.9201 |
124
+ | 0.0499 | 0.48 | 74000 | 0.0373 | 0.9200 |
125
+ | 0.0578 | 0.48 | 75000 | 0.0367 | 0.9200 |
126
+ | 0.0545 | 0.49 | 76000 | 0.0356 | 0.9200 |
127
+ | 0.0527 | 0.5 | 77000 | 0.0358 | 0.9200 |
128
+ | 0.0464 | 0.5 | 78000 | 0.0354 | 0.9201 |
129
+ | 0.0546 | 0.51 | 79000 | 0.0354 | 0.9200 |
130
+ | 0.0536 | 0.52 | 80000 | 0.0346 | 0.9200 |
131
+ | 0.0568 | 0.52 | 81000 | 0.0355 | 0.9199 |
132
+ | 0.0486 | 0.53 | 82000 | 0.0346 | 0.9199 |
133
+ | 0.0571 | 0.54 | 83000 | 0.0338 | 0.9200 |
134
+ | 0.0526 | 0.54 | 84000 | 0.0339 | 0.9200 |
135
+ | 0.0485 | 0.55 | 85000 | 0.0338 | 0.9200 |
136
+ | 0.0489 | 0.56 | 86000 | 0.0345 | 0.9199 |
137
+ | 0.0473 | 0.56 | 87000 | 0.0338 | 0.9201 |
138
+ | 0.0449 | 0.57 | 88000 | 0.0334 | 0.9199 |
139
+ | 0.0516 | 0.57 | 89000 | 0.0331 | 0.9199 |
140
+ | 0.0537 | 0.58 | 90000 | 0.0331 | 0.9199 |
141
+ | 0.0477 | 0.59 | 91000 | 0.0326 | 0.9200 |
142
+ | 0.046 | 0.59 | 92000 | 0.0325 | 0.9201 |
143
+ | 0.0545 | 0.6 | 93000 | 0.0326 | 0.9200 |
144
+ | 0.0473 | 0.61 | 94000 | 0.0327 | 0.9201 |
145
+ | 0.0558 | 0.61 | 95000 | 0.0324 | 0.9199 |
146
+ | 0.0428 | 0.62 | 96000 | 0.0317 | 0.9200 |
147
+ | 0.0596 | 0.63 | 97000 | 0.0314 | 0.9200 |
148
+ | 0.0449 | 0.63 | 98000 | 0.0322 | 0.9200 |
149
+ | 0.041 | 0.64 | 99000 | 0.0314 | 0.9199 |
150
+ | 0.0464 | 0.65 | 100000 | 0.0319 | 0.9200 |
151
+ | 0.0519 | 0.65 | 101000 | 0.0301 | 0.9199 |
152
+ | 0.0417 | 0.66 | 102000 | 0.0305 | 0.9199 |
153
+ | 0.0456 | 0.66 | 103000 | 0.0308 | 0.9199 |
154
+ | 0.046 | 0.67 | 104000 | 0.0315 | 0.9198 |
155
+ | 0.0462 | 0.68 | 105000 | 0.0306 | 0.9199 |
156
+ | 0.0478 | 0.68 | 106000 | 0.0306 | 0.9199 |
157
+ | 0.0456 | 0.69 | 107000 | 0.0308 | 0.9199 |
158
+ | 0.0433 | 0.7 | 108000 | 0.0302 | 0.9200 |
159
+ | 0.0498 | 0.7 | 109000 | 0.0296 | 0.9200 |
160
+ | 0.0438 | 0.71 | 110000 | 0.0300 | 0.9200 |
161
+ | 0.0394 | 0.72 | 111000 | 0.0299 | 0.9198 |
162
+ | 0.0451 | 0.72 | 112000 | 0.0297 | 0.9200 |
163
+ | 0.0413 | 0.73 | 113000 | 0.0295 | 0.9199 |
164
+ | 0.0461 | 0.74 | 114000 | 0.0301 | 0.9198 |
165
+ | 0.0501 | 0.74 | 115000 | 0.0296 | 0.9199 |
166
+ | 0.0387 | 0.75 | 116000 | 0.0293 | 0.9200 |
167
+ | 0.0384 | 0.76 | 117000 | 0.0293 | 0.9199 |
168
+ | 0.0492 | 0.76 | 118000 | 0.0291 | 0.9199 |
169
+ | 0.0415 | 0.77 | 119000 | 0.0288 | 0.9200 |
170
+ | 0.0435 | 0.77 | 120000 | 0.0286 | 0.9199 |
171
+ | 0.0423 | 0.78 | 121000 | 0.0284 | 0.9198 |
172
+ | 0.0437 | 0.79 | 122000 | 0.0286 | 0.9199 |
173
+ | 0.0512 | 0.79 | 123000 | 0.0285 | 0.9200 |
174
+ | 0.0427 | 0.8 | 124000 | 0.0285 | 0.9199 |
175
+ | 0.0461 | 0.81 | 125000 | 0.0287 | 0.9199 |
176
+ | 0.0433 | 0.81 | 126000 | 0.0290 | 0.9198 |
177
+ | 0.0386 | 0.82 | 127000 | 0.0283 | 0.9199 |
178
+ | 0.0407 | 0.83 | 128000 | 0.0282 | 0.9199 |
179
+ | 0.0466 | 0.83 | 129000 | 0.0276 | 0.9199 |
180
+ | 0.048 | 0.84 | 130000 | 0.0278 | 0.9201 |
181
+ | 0.046 | 0.85 | 131000 | 0.0279 | 0.9199 |
182
+ | 0.0431 | 0.85 | 132000 | 0.0270 | 0.9199 |
183
+ | 0.047 | 0.86 | 133000 | 0.0272 | 0.9199 |
184
+ | 0.0466 | 0.86 | 134000 | 0.0266 | 0.9199 |
185
+ | 0.04 | 0.87 | 135000 | 0.0267 | 0.9199 |
186
+ | 0.038 | 0.88 | 136000 | 0.0271 | 0.9199 |
187
+ | 0.0382 | 0.88 | 137000 | 0.0271 | 0.9199 |
188
+ | 0.0422 | 0.89 | 138000 | 0.0265 | 0.9199 |
189
+ | 0.0464 | 0.9 | 139000 | 0.0265 | 0.9200 |
190
+ | 0.0372 | 0.9 | 140000 | 0.0270 | 0.9200 |
191
+ | 0.0381 | 0.91 | 141000 | 0.0266 | 0.9199 |
192
+ | 0.0359 | 0.92 | 142000 | 0.0267 | 0.9198 |
193
+ | 0.0368 | 0.92 | 143000 | 0.0270 | 0.9199 |
194
+ | 0.0365 | 0.93 | 144000 | 0.0266 | 0.9199 |
195
+ | 0.0413 | 0.94 | 145000 | 0.0268 | 0.9199 |
196
+ | 0.0383 | 0.94 | 146000 | 0.0261 | 0.9199 |
197
+ | 0.0396 | 0.95 | 147000 | 0.0259 | 0.9199 |
198
+ | 0.0405 | 0.96 | 148000 | 0.0260 | 0.9199 |
199
+ | 0.0433 | 0.96 | 149000 | 0.0258 | 0.9199 |
200
+ | 0.0378 | 0.97 | 150000 | 0.0260 | 0.9200 |
201
+ | 0.0337 | 0.97 | 151000 | 0.0258 | 0.9199 |
202
+ | 0.0456 | 0.98 | 152000 | 0.0254 | 0.9199 |
203
+ | 0.0355 | 0.99 | 153000 | 0.0256 | 0.9199 |
204
+ | 0.0396 | 0.99 | 154000 | 0.0253 | 0.9199 |
205
+ | 0.0353 | 1.0 | 155000 | 0.0256 | 0.9199 |
206
+ | 0.036 | 1.01 | 156000 | 0.0253 | 0.9200 |
207
+ | 0.0345 | 1.01 | 157000 | 0.0254 | 0.9199 |
208
+ | 0.0321 | 1.02 | 158000 | 0.0248 | 0.9198 |
209
+ | 0.0366 | 1.03 | 159000 | 0.0252 | 0.9200 |
210
+ | 0.0298 | 1.03 | 160000 | 0.0254 | 0.9198 |
211
+ | 0.0316 | 1.04 | 161000 | 0.0250 | 0.9199 |
212
+ | 0.0322 | 1.05 | 162000 | 0.0243 | 0.9199 |
213
+ | 0.0313 | 1.05 | 163000 | 0.0246 | 0.9198 |
214
+ | 0.0329 | 1.06 | 164000 | 0.0247 | 0.9200 |
215
+ | 0.0393 | 1.06 | 165000 | 0.0248 | 0.9198 |
216
+ | 0.0352 | 1.07 | 166000 | 0.0243 | 0.9198 |
217
+ | 0.0319 | 1.08 | 167000 | 0.0244 | 0.9199 |
218
+ | 0.0315 | 1.08 | 168000 | 0.0250 | 0.9198 |
219
+ | 0.0345 | 1.09 | 169000 | 0.0243 | 0.9199 |
220
+ | 0.0341 | 1.1 | 170000 | 0.0247 | 0.9199 |
221
+ | 0.0317 | 1.1 | 171000 | 0.0241 | 0.9199 |
222
+ | 0.0313 | 1.11 | 172000 | 0.0245 | 0.9199 |
223
+ | 0.033 | 1.12 | 173000 | 0.0237 | 0.9199 |
224
+ | 0.0339 | 1.12 | 174000 | 0.0237 | 0.9199 |
225
+ | 0.0319 | 1.13 | 175000 | 0.0240 | 0.9199 |
226
+ | 0.0391 | 1.14 | 176000 | 0.0241 | 0.9199 |
227
+ | 0.0325 | 1.14 | 177000 | 0.0239 | 0.9200 |
228
+ | 0.0295 | 1.15 | 178000 | 0.0240 | 0.9199 |
229
+ | 0.0288 | 1.16 | 179000 | 0.0232 | 0.9199 |
230
+ | 0.0347 | 1.16 | 180000 | 0.0234 | 0.9199 |
231
+ | 0.029 | 1.17 | 181000 | 0.0234 | 0.9198 |
232
+ | 0.0305 | 1.17 | 182000 | 0.0231 | 0.9199 |
233
+ | 0.0454 | 1.18 | 183000 | 0.0231 | 0.9200 |
234
+ | 0.0339 | 1.19 | 184000 | 0.0234 | 0.9199 |
235
+ | 0.0375 | 1.19 | 185000 | 0.0229 | 0.9199 |
236
+ | 0.0351 | 1.2 | 186000 | 0.0227 | 0.9199 |
237
+ | 0.0305 | 1.21 | 187000 | 0.0230 | 0.9199 |
238
+ | 0.0376 | 1.21 | 188000 | 0.0228 | 0.9199 |
239
+ | 0.0338 | 1.22 | 189000 | 0.0225 | 0.9200 |
240
+ | 0.0315 | 1.23 | 190000 | 0.0229 | 0.9199 |
241
+ | 0.0369 | 1.23 | 191000 | 0.0229 | 0.9199 |
242
+ | 0.0288 | 1.24 | 192000 | 0.0227 | 0.9199 |
243
+ | 0.0344 | 1.25 | 193000 | 0.0225 | 0.9199 |
244
+ | 0.0283 | 1.25 | 194000 | 0.0221 | 0.9199 |
245
+ | 0.0377 | 1.26 | 195000 | 0.0225 | 0.9198 |
246
+ | 0.0395 | 1.27 | 196000 | 0.0225 | 0.9199 |
247
+ | 0.0268 | 1.27 | 197000 | 0.0224 | 0.9199 |
248
+ | 0.032 | 1.28 | 198000 | 0.0222 | 0.9199 |
249
+ | 0.0328 | 1.28 | 199000 | 0.0221 | 0.9199 |
250
+ | 0.0278 | 1.29 | 200000 | 0.0220 | 0.9198 |
251
+ | 0.029 | 1.3 | 201000 | 0.0221 | 0.9199 |
252
+ | 0.0319 | 1.3 | 202000 | 0.0218 | 0.9199 |
253
+ | 0.0422 | 1.31 | 203000 | 0.0220 | 0.9199 |
254
+ | 0.0301 | 1.32 | 204000 | 0.0215 | 0.9198 |
255
+ | 0.0293 | 1.32 | 205000 | 0.0217 | 0.9198 |
256
+ | 0.0347 | 1.33 | 206000 | 0.0216 | 0.9199 |
257
+ | 0.0288 | 1.34 | 207000 | 0.0215 | 0.9199 |
258
+ | 0.0264 | 1.34 | 208000 | 0.0216 | 0.9199 |
259
+ | 0.0341 | 1.35 | 209000 | 0.0214 | 0.9199 |
260
+ | 0.029 | 1.36 | 210000 | 0.0213 | 0.9199 |
261
+ | 0.0281 | 1.36 | 211000 | 0.0218 | 0.9198 |
262
+ | 0.033 | 1.37 | 212000 | 0.0212 | 0.9199 |
263
+ | 0.0348 | 1.37 | 213000 | 0.0211 | 0.9199 |
264
+ | 0.0291 | 1.38 | 214000 | 0.0214 | 0.9199 |
265
+ | 0.0353 | 1.39 | 215000 | 0.0212 | 0.9199 |
266
+ | 0.0324 | 1.39 | 216000 | 0.0209 | 0.9199 |
267
+ | 0.0342 | 1.4 | 217000 | 0.0209 | 0.9199 |
268
+ | 0.0293 | 1.41 | 218000 | 0.0212 | 0.9199 |
269
+ | 0.0281 | 1.41 | 219000 | 0.0209 | 0.9199 |
270
+ | 0.0286 | 1.42 | 220000 | 0.0209 | 0.9198 |
271
+ | 0.0297 | 1.43 | 221000 | 0.0205 | 0.9200 |
272
+ | 0.0256 | 1.43 | 222000 | 0.0207 | 0.9199 |
273
+ | 0.0261 | 1.44 | 223000 | 0.0209 | 0.9198 |
274
+ | 0.0274 | 1.45 | 224000 | 0.0204 | 0.9199 |
275
+ | 0.0343 | 1.45 | 225000 | 0.0201 | 0.9199 |
276
+ | 0.0249 | 1.46 | 226000 | 0.0204 | 0.9199 |
277
+ | 0.0267 | 1.47 | 227000 | 0.0202 | 0.9199 |
278
+ | 0.0264 | 1.47 | 228000 | 0.0202 | 0.9199 |
279
+ | 0.031 | 1.48 | 229000 | 0.0201 | 0.9199 |
280
+ | 0.0273 | 1.48 | 230000 | 0.0199 | 0.9199 |
281
+ | 0.024 | 1.49 | 231000 | 0.0199 | 0.9199 |
282
+ | 0.0295 | 1.5 | 232000 | 0.0198 | 0.9199 |
283
+ | 0.0281 | 1.5 | 233000 | 0.0196 | 0.9199 |
284
+ | 0.0243 | 1.51 | 234000 | 0.0195 | 0.9198 |
285
+ | 0.0258 | 1.52 | 235000 | 0.0197 | 0.9199 |
286
+ | 0.0272 | 1.52 | 236000 | 0.0196 | 0.9198 |
287
+ | 0.0261 | 1.53 | 237000 | 0.0198 | 0.9199 |
288
+ | 0.0222 | 1.54 | 238000 | 0.0198 | 0.9199 |
289
+ | 0.0259 | 1.54 | 239000 | 0.0195 | 0.9199 |
290
+ | 0.0317 | 1.55 | 240000 | 0.0194 | 0.9199 |
291
+ | 0.0266 | 1.56 | 241000 | 0.0191 | 0.9199 |
292
+ | 0.0272 | 1.56 | 242000 | 0.0193 | 0.9199 |
293
+ | 0.0236 | 1.57 | 243000 | 0.0194 | 0.9199 |
294
+ | 0.0266 | 1.57 | 244000 | 0.0193 | 0.9198 |
295
+ | 0.027 | 1.58 | 245000 | 0.0195 | 0.9199 |
296
+ | 0.0257 | 1.59 | 246000 | 0.0192 | 0.9199 |
297
+ | 0.0276 | 1.59 | 247000 | 0.0190 | 0.9199 |
298
+ | 0.0238 | 1.6 | 248000 | 0.0188 | 0.9199 |
299
+ | 0.0301 | 1.61 | 249000 | 0.0188 | 0.9199 |
300
+ | 0.0273 | 1.61 | 250000 | 0.0189 | 0.9199 |
301
+ | 0.0246 | 1.62 | 251000 | 0.0187 | 0.9198 |
302
+ | 0.0309 | 1.63 | 252000 | 0.0187 | 0.9198 |
303
+ | 0.0237 | 1.63 | 253000 | 0.0188 | 0.9199 |
304
+ | 0.0234 | 1.64 | 254000 | 0.0184 | 0.9198 |
305
+ | 0.0246 | 1.65 | 255000 | 0.0186 | 0.9198 |
306
+ | 0.0213 | 1.65 | 256000 | 0.0182 | 0.9199 |
307
+ | 0.0251 | 1.66 | 257000 | 0.0182 | 0.9198 |
308
+ | 0.0236 | 1.67 | 258000 | 0.0184 | 0.9198 |
309
+ | 0.0276 | 1.67 | 259000 | 0.0185 | 0.9198 |
310
+ | 0.0233 | 1.68 | 260000 | 0.0182 | 0.9199 |
311
+ | 0.0205 | 1.68 | 261000 | 0.0183 | 0.9198 |
312
+ | 0.0253 | 1.69 | 262000 | 0.0181 | 0.9198 |
313
+ | 0.0221 | 1.7 | 263000 | 0.0180 | 0.9198 |
314
+ | 0.0228 | 1.7 | 264000 | 0.0182 | 0.9199 |
315
+ | 0.0209 | 1.71 | 265000 | 0.0181 | 0.9198 |
316
+ | 0.0319 | 1.72 | 266000 | 0.0179 | 0.9199 |
317
+ | 0.0236 | 1.72 | 267000 | 0.0178 | 0.9199 |
318
+ | 0.029 | 1.73 | 268000 | 0.0179 | 0.9198 |
319
+ | 0.0233 | 1.74 | 269000 | 0.0178 | 0.9198 |
320
+ | 0.0248 | 1.74 | 270000 | 0.0176 | 0.9198 |
321
+ | 0.0211 | 1.75 | 271000 | 0.0177 | 0.9198 |
322
+ | 0.0257 | 1.76 | 272000 | 0.0177 | 0.9198 |
323
+ | 0.0247 | 1.76 | 273000 | 0.0175 | 0.9199 |
324
+ | 0.0323 | 1.77 | 274000 | 0.0176 | 0.9199 |
325
+ | 0.0236 | 1.77 | 275000 | 0.0175 | 0.9198 |
326
+ | 0.0202 | 1.78 | 276000 | 0.0176 | 0.9198 |
327
+ | 0.0318 | 1.79 | 277000 | 0.0174 | 0.9199 |
328
+ | 0.0206 | 1.79 | 278000 | 0.0175 | 0.9198 |
329
+ | 0.0245 | 1.8 | 279000 | 0.0174 | 0.9199 |
330
+ | 0.0177 | 1.81 | 280000 | 0.0174 | 0.9199 |
331
+ | 0.0268 | 1.81 | 281000 | 0.0174 | 0.9199 |
332
+ | 0.0209 | 1.82 | 282000 | 0.0172 | 0.9199 |
333
+ | 0.0248 | 1.83 | 283000 | 0.0171 | 0.9198 |
334
+ | 0.0205 | 1.83 | 284000 | 0.0173 | 0.9198 |
335
+ | 0.0231 | 1.84 | 285000 | 0.0172 | 0.9199 |
336
+ | 0.0278 | 1.85 | 286000 | 0.0171 | 0.9198 |
337
+ | 0.0244 | 1.85 | 287000 | 0.0171 | 0.9198 |
338
+ | 0.0223 | 1.86 | 288000 | 0.0169 | 0.9198 |
339
+ | 0.0285 | 1.87 | 289000 | 0.0168 | 0.9198 |
340
+ | 0.0223 | 1.87 | 290000 | 0.0169 | 0.9198 |
341
+ | 0.0231 | 1.88 | 291000 | 0.0169 | 0.9198 |
342
+ | 0.0192 | 1.88 | 292000 | 0.0169 | 0.9198 |
343
+ | 0.0234 | 1.89 | 293000 | 0.0168 | 0.9198 |
344
+ | 0.0223 | 1.9 | 294000 | 0.0168 | 0.9198 |
345
+ | 0.0255 | 1.9 | 295000 | 0.0168 | 0.9198 |
346
+ | 0.0248 | 1.91 | 296000 | 0.0166 | 0.9198 |
347
+ | 0.0216 | 1.92 | 297000 | 0.0166 | 0.9198 |
348
+ | 0.0219 | 1.92 | 298000 | 0.0167 | 0.9198 |
349
+ | 0.0196 | 1.93 | 299000 | 0.0167 | 0.9198 |
350
+ | 0.0175 | 1.94 | 300000 | 0.0166 | 0.9198 |
351
+ | 0.0228 | 1.94 | 301000 | 0.0165 | 0.9198 |
352
+ | 0.019 | 1.95 | 302000 | 0.0165 | 0.9198 |
353
+ | 0.0191 | 1.96 | 303000 | 0.0165 | 0.9198 |
354
+ | 0.0249 | 1.96 | 304000 | 0.0165 | 0.9198 |
355
+ | 0.0233 | 1.97 | 305000 | 0.0164 | 0.9198 |
356
+ | 0.0211 | 1.97 | 306000 | 0.0164 | 0.9198 |
357
+ | 0.02 | 1.98 | 307000 | 0.0164 | 0.9198 |
358
+ | 0.0191 | 1.99 | 308000 | 0.0164 | 0.9198 |
359
+ | 0.0214 | 1.99 | 309000 | 0.0164 | 0.9198 |
360
 
361
 
362
  ### Framework versions
all_results.json CHANGED
@@ -1,14 +1,14 @@
1
  {
2
  "epoch": 2.0,
3
- "eval_cer": 0.014513880422164147,
4
- "eval_loss": 0.02208337001502514,
5
- "eval_runtime": 1920.0198,
6
  "eval_samples": 2000,
7
- "eval_samples_per_second": 1.042,
8
- "eval_steps_per_second": 0.26,
9
- "train_loss": 0.05150384478483596,
10
- "train_runtime": 204639.736,
11
- "train_samples": 2958558,
12
- "train_samples_per_second": 28.915,
13
- "train_steps_per_second": 0.904
14
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "eval_cer": 0.013285730425940572,
4
+ "eval_loss": 0.024751625955104828,
5
+ "eval_runtime": 1869.7345,
6
  "eval_samples": 2000,
7
+ "eval_samples_per_second": 1.07,
8
+ "eval_steps_per_second": 0.267,
9
+ "train_loss": 0.047053869794253175,
10
+ "train_runtime": 343177.6492,
11
+ "train_samples": 4957999,
12
+ "train_samples_per_second": 28.895,
13
+ "train_steps_per_second": 0.903
14
  }
eval_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "epoch": 2.0,
3
- "eval_cer": 0.014513880422164147,
4
- "eval_loss": 0.02208337001502514,
5
- "eval_runtime": 1920.0198,
6
  "eval_samples": 2000,
7
- "eval_samples_per_second": 1.042,
8
- "eval_steps_per_second": 0.26
9
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "eval_cer": 0.013285730425940572,
4
+ "eval_loss": 0.024751625955104828,
5
+ "eval_runtime": 1869.7345,
6
  "eval_samples": 2000,
7
+ "eval_samples_per_second": 1.07,
8
+ "eval_steps_per_second": 0.267
9
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb2eb6470de7d689abff2f06ce460c17539f1dcffe05da3ff6a91b4cf6c353dd
3
  size 557971229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a88fc7ded935df70dcafe67db7bc7214334bab70e42a315c9785ebdf7cd750a9
3
  size 557971229
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 2.0,
3
- "train_loss": 0.05150384478483596,
4
- "train_runtime": 204639.736,
5
- "train_samples": 2958558,
6
- "train_samples_per_second": 28.915,
7
- "train_steps_per_second": 0.904
8
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "train_loss": 0.047053869794253175,
4
+ "train_runtime": 343177.6492,
5
+ "train_samples": 4957999,
6
+ "train_samples_per_second": 28.895,
7
+ "train_steps_per_second": 0.903
8
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dcaa8fb3e6403c3f1d958c15d97817380cca47833d439484dd2f38a0a53f4340
3
  size 3707
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1aad804f228e120d28bf4be176a8fd53fb1a8d0a742145b5d195d7bdff2768b
3
  size 3707