File size: 4,365 Bytes
6af8314 3c1cf1a 6af8314 3c1cf1a 6af8314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
model-index:
- name: robbert-v2-dutch-base-finetuned-emotion-valence
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert-v2-dutch-base-finetuned-emotion-valence
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0317
- Rmse: 0.1781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0813 | 1.0 | 25 | 0.0510 | 0.2258 |
| 0.0445 | 2.0 | 50 | 0.0381 | 0.1952 |
| 0.0409 | 3.0 | 75 | 0.0466 | 0.2158 |
| 0.0308 | 4.0 | 100 | 0.0351 | 0.1874 |
| 0.0257 | 5.0 | 125 | 0.0393 | 0.1983 |
| 0.0231 | 6.0 | 150 | 0.0442 | 0.2103 |
| 0.0203 | 7.0 | 175 | 0.0447 | 0.2115 |
| 0.0191 | 8.0 | 200 | 0.0372 | 0.1929 |
| 0.0156 | 9.0 | 225 | 0.0425 | 0.2061 |
| 0.0154 | 10.0 | 250 | 0.0367 | 0.1917 |
| 0.0138 | 11.0 | 275 | 0.0365 | 0.1910 |
| 0.0128 | 12.0 | 300 | 0.0432 | 0.2078 |
| 0.0137 | 13.0 | 325 | 0.0329 | 0.1814 |
| 0.0118 | 14.0 | 350 | 0.0327 | 0.1809 |
| 0.0118 | 15.0 | 375 | 0.0378 | 0.1945 |
| 0.0109 | 16.0 | 400 | 0.0360 | 0.1897 |
| 0.0103 | 17.0 | 425 | 0.0325 | 0.1803 |
| 0.0096 | 18.0 | 450 | 0.0327 | 0.1809 |
| 0.0091 | 19.0 | 475 | 0.0430 | 0.2072 |
| 0.0081 | 20.0 | 500 | 0.0345 | 0.1856 |
| 0.0094 | 21.0 | 525 | 0.0365 | 0.1912 |
| 0.0084 | 22.0 | 550 | 0.0350 | 0.1870 |
| 0.0075 | 23.0 | 575 | 0.0324 | 0.1800 |
| 0.0069 | 24.0 | 600 | 0.0330 | 0.1816 |
| 0.0087 | 25.0 | 625 | 0.0347 | 0.1863 |
| 0.0079 | 26.0 | 650 | 0.0297 | 0.1722 |
| 0.0071 | 27.0 | 675 | 0.0311 | 0.1763 |
| 0.0076 | 28.0 | 700 | 0.0322 | 0.1795 |
| 0.0064 | 29.0 | 725 | 0.0338 | 0.1839 |
| 0.0067 | 30.0 | 750 | 0.0326 | 0.1806 |
| 0.0061 | 31.0 | 775 | 0.0327 | 0.1808 |
| 0.0064 | 32.0 | 800 | 0.0339 | 0.1842 |
| 0.0062 | 33.0 | 825 | 0.0300 | 0.1732 |
| 0.0062 | 34.0 | 850 | 0.0331 | 0.1819 |
| 0.0055 | 35.0 | 875 | 0.0318 | 0.1782 |
| 0.0059 | 36.0 | 900 | 0.0323 | 0.1797 |
| 0.0056 | 37.0 | 925 | 0.0311 | 0.1765 |
| 0.0055 | 38.0 | 950 | 0.0310 | 0.1762 |
| 0.0053 | 39.0 | 975 | 0.0325 | 0.1802 |
| 0.0056 | 40.0 | 1000 | 0.0310 | 0.1761 |
| 0.0054 | 41.0 | 1025 | 0.0323 | 0.1799 |
| 0.0057 | 42.0 | 1050 | 0.0351 | 0.1873 |
| 0.0053 | 43.0 | 1075 | 0.0347 | 0.1861 |
| 0.0054 | 44.0 | 1100 | 0.0330 | 0.1816 |
| 0.0059 | 45.0 | 1125 | 0.0313 | 0.1769 |
| 0.0053 | 46.0 | 1150 | 0.0312 | 0.1766 |
| 0.0051 | 47.0 | 1175 | 0.0325 | 0.1804 |
| 0.0057 | 48.0 | 1200 | 0.0304 | 0.1745 |
| 0.0048 | 49.0 | 1225 | 0.0317 | 0.1782 |
| 0.005 | 50.0 | 1250 | 0.0317 | 0.1781 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|