--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer model-index: - name: robbert-v2-dutch-base-finetuned-emotion-valence results: [] --- # robbert-v2-dutch-base-finetuned-emotion-valence This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0327 - Rmse: 0.1808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0887 | 1.0 | 25 | 0.0611 | 0.2472 | | 0.044 | 2.0 | 50 | 0.0403 | 0.2008 | | 0.0356 | 3.0 | 75 | 0.0435 | 0.2085 | | 0.0301 | 4.0 | 100 | 0.0415 | 0.2038 | | 0.0246 | 5.0 | 125 | 0.0377 | 0.1941 | | 0.0224 | 6.0 | 150 | 0.0355 | 0.1885 | | 0.0218 | 7.0 | 175 | 0.0379 | 0.1946 | | 0.0174 | 8.0 | 200 | 0.0436 | 0.2088 | | 0.0156 | 9.0 | 225 | 0.0361 | 0.1901 | | 0.0138 | 10.0 | 250 | 0.0379 | 0.1947 | | 0.0135 | 11.0 | 275 | 0.0386 | 0.1965 | | 0.013 | 12.0 | 300 | 0.0402 | 0.2005 | | 0.0125 | 13.0 | 325 | 0.0325 | 0.1804 | | 0.0117 | 14.0 | 350 | 0.0349 | 0.1868 | | 0.0109 | 15.0 | 375 | 0.0366 | 0.1914 | | 0.0108 | 16.0 | 400 | 0.0382 | 0.1953 | | 0.0091 | 17.0 | 425 | 0.0336 | 0.1833 | | 0.0097 | 18.0 | 450 | 0.0325 | 0.1802 | | 0.0098 | 19.0 | 475 | 0.0406 | 0.2014 | | 0.0094 | 20.0 | 500 | 0.0330 | 0.1816 | | 0.0088 | 21.0 | 525 | 0.0349 | 0.1868 | | 0.0087 | 22.0 | 550 | 0.0337 | 0.1835 | | 0.0079 | 23.0 | 575 | 0.0340 | 0.1845 | | 0.0074 | 24.0 | 600 | 0.0372 | 0.1928 | | 0.007 | 25.0 | 625 | 0.0345 | 0.1856 | | 0.0072 | 26.0 | 650 | 0.0333 | 0.1824 | | 0.0074 | 27.0 | 675 | 0.0308 | 0.1756 | | 0.0071 | 28.0 | 700 | 0.0314 | 0.1772 | | 0.0067 | 29.0 | 725 | 0.0314 | 0.1772 | | 0.0065 | 30.0 | 750 | 0.0333 | 0.1824 | | 0.0072 | 31.0 | 775 | 0.0337 | 0.1837 | | 0.0065 | 32.0 | 800 | 0.0351 | 0.1873 | | 0.0057 | 33.0 | 825 | 0.0330 | 0.1818 | | 0.0067 | 34.0 | 850 | 0.0367 | 0.1915 | | 0.0061 | 35.0 | 875 | 0.0358 | 0.1893 | | 0.0062 | 36.0 | 900 | 0.0353 | 0.1879 | | 0.006 | 37.0 | 925 | 0.0317 | 0.1779 | | 0.0059 | 38.0 | 950 | 0.0331 | 0.1819 | | 0.0058 | 39.0 | 975 | 0.0308 | 0.1755 | | 0.0057 | 40.0 | 1000 | 0.0338 | 0.1838 | | 0.0055 | 41.0 | 1025 | 0.0324 | 0.1800 | | 0.0056 | 42.0 | 1050 | 0.0333 | 0.1824 | | 0.0054 | 43.0 | 1075 | 0.0331 | 0.1819 | | 0.0062 | 44.0 | 1100 | 0.0329 | 0.1813 | | 0.0056 | 45.0 | 1125 | 0.0325 | 0.1802 | | 0.0051 | 46.0 | 1150 | 0.0324 | 0.1801 | | 0.0056 | 47.0 | 1175 | 0.0322 | 0.1795 | | 0.0056 | 48.0 | 1200 | 0.0331 | 0.1818 | | 0.0053 | 49.0 | 1225 | 0.0322 | 0.1794 | | 0.0056 | 50.0 | 1250 | 0.0327 | 0.1808 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1