antitheft159 commited on
Commit
3b3e339
·
verified ·
1 Parent(s): bbcf011

Upload infraredsecure_wealthstream.py

Browse files
Files changed (1) hide show
  1. infraredsecure_wealthstream.py +93 -0
infraredsecure_wealthstream.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """InfraredSecure WealthStream
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1UNwFXrR1ccb2fmWHLXgOHIe4LaTszQzq
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import numpy as np
13
+ import matplotlib.pyplot as plt
14
+
15
+ # Parameters
16
+ num_nodes = 10000
17
+ hours = 24
18
+ samples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)
19
+ time_steps = hours * samples_per_hour
20
+ wave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle
21
+ wave_amplitude = 1.0
22
+ infrared_amplitude = 0.5 # Constant amplitude for even distribution
23
+ brainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)
24
+ brainwave_amplitude = 0.3
25
+ random_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities
26
+ encryption_key = 0.5 # Encryption key for simulating protection
27
+
28
+ # Define the PyTorch model with VPN-like frequency
29
+ class WealthSignalVPNModel(nn.Module):
30
+ def __init__(self):
31
+ super(WealthSignalVPNModel, self).__init__()
32
+ self.num_nodes = num_nodes
33
+ self.time_steps = time_steps
34
+ self.encryption_key = encryption_key
35
+
36
+ def forward(self, time_tensor):
37
+ # Initialize the combined signals tensor
38
+ combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)
39
+
40
+ for i in range(self.num_nodes):
41
+ # Wealth signal with a phase shift for each node
42
+ wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))
43
+ # Random wealth opportunities
44
+ random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)
45
+ # Constant infrared energy signal
46
+ infrared_signal = infrared_amplitude * torch.ones(self.time_steps)
47
+ # Perfect brainwave pattern (alpha waves)
48
+ brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)
49
+ # Combine signals for each node
50
+ combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal
51
+
52
+ # Combine all signals (simulating dense waveform)
53
+ overall_signal = torch.mean(combined_signals, dim=0)
54
+
55
+ # Apply VPN-like encryption (scramble signal)
56
+ encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function
57
+
58
+ return encrypted_signal, overall_signal # Return both encrypted and original signals for validation
59
+
60
+ # Create a time tensor
61
+ time_tensor = torch.linspace(0, hours, time_steps)
62
+
63
+ # Initialize and run the model
64
+ vpn_model = WealthSignalVPNModel()
65
+ encrypted_signal, original_signal = vpn_model(time_tensor)
66
+
67
+ # Convert the signals to numpy for plotting
68
+ encrypted_signal_np = encrypted_signal.detach().numpy()
69
+ original_signal_np = original_signal.detach().numpy()
70
+
71
+ # Reshape the signals for 2D visualization (e.g., hours x samples_per_hour)
72
+ encrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours))
73
+ original_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours))
74
+
75
+ # Plot the resulting color maps
76
+ fig, axs = plt.subplots(2, 1, figsize=(15, 12))
77
+
78
+ # Original Signal Plot
79
+ cax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
80
+ axs[0].set_title('Original Signal Visualization')
81
+ axs[0].set_xlabel('Time (Hours)')
82
+ axs[0].set_ylabel('Sample Points Per Hour')
83
+ fig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude')
84
+
85
+ # Encrypted Signal Plot
86
+ cax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
87
+ axs[1].set_title('Encrypted Signal Visualization')
88
+ axs[1].set_xlabel('Time (Hours)')
89
+ axs[1].set_ylabel('Sample Points Per Hour')
90
+ fig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude')
91
+
92
+ plt.tight_layout()
93
+ plt.show()