PulseWavefront / References
antitheft159's picture
Create References
e1d3f05 verified
raw
history blame
17.8 kB
import torch
import torch.nn as nn
import numpy as np
import matplot.pyplot as plt
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulatoin_frequency = 50
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmission(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
plt.figure(figsize=(15, 8))
plt.subplot(3, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(3, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()
plt.subplot(3, 1, 3)
plt.plot(time, tranmitted_signal, color='green', label=Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulation_frequency = 50
attenuation_factor = 0.5
noise_intensity = 0.2
multi_path_delay = 50
multi_path_amplitude = 0.3
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
pwn_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmission(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
def attenuate_signal(signal, attenuation_factor):
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
return noisy_signal
def multi_path_effects(signal, delaym amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
transmitted_signal = directional_transmission(infreared_stored_signal, phase_shift=100)
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
noisy_signal, add_noise(attenuated_signal, noise_intensity)
final_signal = multi_path_effects(noisy_signal, multi_path_delay, mutli_path_amplitude
plt.figure(figsize=(15, 12))
plt.subplot(4, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusodial Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 3)
plt.plot(time, transmited_signal, color='green', label='Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 4)
plt.plot(time, final_signal, color='purple', lable='Final Signal with Attenuation, Noise, and Multi-Path Effects')
plt.title('Final Signal in Dense Space')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animatoin import FuncAnimation
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulation_frequency = 50
atenuation_factor = 0.5
noise_intensity = 0.2
multi_path_delay = 50
multi_path_amplitude = 0.3
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
pwn_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmission(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
attenuated_signal = attenuated_signal(transmitted_signal, attenuation_factor)
noisy_signal = add_noise(attenuated_signal, noise_intensity
final_signal = multi_paht_effects(noisy_signal, multi_path_delay, multi_path_amplitude
fig, ax = plt.subplots(figsize=(15, 6))
line, = ax.plot([], [], color='purple')
ax.set_xlim(0, time_steps)
ax.set_ylim(-1.5, 1.5)
ax.set_title('Animated Signal Transmission')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.grid(True)
def animate(frame):
current_signal = np.roll(final_signal, frame)
line.set_data(np.arange(len(current_signal)), current_signal)
return line,
ani = FuncAnimation(fig, animate, frames=time_steps, interval=20, blit=True)
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulation_frequency = 50
attenuation_factor = 0.5
noise_intensity = 0.2
mutli_path_delay = 50
multi_path_amplitude = 0.3
encryption_keys = [0.5, 1.2, 0.9]
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmissoin(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
def attenuate_signal(signal, attenuation_factor):
attenuatoin = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key)
return encrypted_signal
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reversed(keys):
decrypted_signal = np.arcsin(decrypted)signal) / key
return decrypted_signal
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signla = infrared_storage(spwm_signal, infreared_voltage)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
noisy_signal = add_noise(attenuated_signal, noise_intensity)
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
encrypted_signal = layered_encryption(final_signal, encryption_keys)
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layour()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulatoin_frequency = 50
attenuation_factor = 0.5
noise_intensity = 0.2
multi_path_delay = 50
multi_path_amplitude = 0.3
encryption_keys = [0.5, 1.2, 0.9]
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
threshold = np.mean(sine_wave_
pwm_signal = np.where(sine_wave > threshold, 1, 0)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmissoin(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
def attenuate_signal(signal, attenuation_factor):
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy signal
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key)
return encrypted_signal
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reversed(keys):
decrypted_signal = np.arcsin(decrypted_signal) / key
return decrypted_signal
def validate_encryption(original_signal, encrypted_signal, decrypted_signal):
assert np.allclose(original_signal, decrypted_signal, atol=1e-2), "Decryption failed to recover the original signal."
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
noisy_signal = add_noise(attenuated_signal, noise_intensity)
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
encrypted_signal = layered_encryption(final_signal, encryption_keys)
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
fig, ax= plt.subplots(2, 1, figsize=(15, 12))
ax[0].plot(np.arant(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
num_nodes = 100
time_steps = 1000
frequency = 1
amplitude = 1.0
sampling_rate = 1000
infrared_voltage = 0.7
pulse_width_modulation_frequency = 50
attenuation_factor = 0.5
noise_intensity = 0.2
multi_path_delay = 50
multi_path_amplitude = 0.3
encryption_keys = [0.5, 1.2, 0.9]
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
threshold = np.mean(sine_wave)
pwm_signal = np.where(sine_wave)
return pwm_signal
def infrared_storage(pwm_signal, voltage):
stored_signal = pwm_signal * voltage
return stored_signal
def directional_transmission(stored_signal, phase_shift):
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmited_signal
def attenuate_signal(signal, attenuation_factor):
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key)
return encrypted_signal
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reveresed(keys):
decrypted_signal = np.arcsin(decrypted_signal) / key
return decrypted_signal
def validate_encryption(original_signal, encrypted_signal, decrypted_signal):
assert np.allclose(original_signal, decrypted_signal, atol=1e-2), "Decryption failed to recover the original signal."
time = np.linspace(0, 1, time_steps)
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
infrared_stored_signal = infrared_storage(spwm_signal, infared_voltage)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
noisy_signal = add_noise(attenuated_signal, noise_intensity)
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude_
encrypted_signal = layered_encryption(final_signal, encryption_keys)
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layout()
plt.show()
import matplotlib.pyplot as plt
import numpy as np
def gradient_color(signal, cmap='viridis'):
norm = plt.Normalizer(signal.min(), signal.max())
colors = plt.get_cmap(cmap)norm(signal))
return colors
time = np.arange(len(final_signal))
colors = gradient_color(final_signal)
fig, ax = plt.subplots(figsize(15, 6))
ax.plot(time, final_signal, color='blue', label='Final Signal')
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')
for i in range*len(final_signal) - 1):
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
ax.set_title('Final Signal with Reflection and Color Gradient')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)
plt.show()
import matplotlib.pyplot as plt
iport numpy as np
import matplotlib.colors as mcolors
def gradient_color(signal, cmap='viridis'):
norm = plt.Normalize(signal.min(), signal.max())
colors = plt.get_cmap(cmap(norm(signal))
return colors
time = np.arange(len(final_signal))
colors = gradient_color(final_signal)
fig, ax = plt.subplots(figsize=(15, 6))
for i in range(len(final_signal) - 1):
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
ax.plot(time, final_signal, color='blue', alpha=0.5, label='Signal')
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'
ax.plot(time, -reflection - reflectoin.min(), color=reflection_color, linestyle='--', alpha=0.6, lable='Reflection')
ax.set_title('PulseWavefront')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)
plt.show()