Upload pulsewavefront.py
Browse files- pulsewavefront.py +761 -0
pulsewavefront.py
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""PulseWavefront
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1KGMUFo-WT6PNswgogzG6F5CpFuD-5CVB
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
# Parameters
|
16 |
+
num_nodes = 100
|
17 |
+
time_steps = 1000 # Number of time steps for signal generation
|
18 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
19 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
20 |
+
sampling_rate = 1000 # Samples per second
|
21 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
22 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
23 |
+
|
24 |
+
# SPWM Signal Generation
|
25 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
26 |
+
# Generate a sinusoidal signal
|
27 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
28 |
+
# Generate PWM signal based on the sinusoidal signal
|
29 |
+
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
|
30 |
+
return pwm_signal
|
31 |
+
|
32 |
+
# Infrared Energy Storage
|
33 |
+
def infrared_storage(pwm_signal, voltage):
|
34 |
+
# Simulate storing data using infrared voltage energy
|
35 |
+
stored_signal = pwm_signal * voltage
|
36 |
+
return stored_signal
|
37 |
+
|
38 |
+
# Directional Transmission (simulating by a shift in phase)
|
39 |
+
def directional_transmission(stored_signal, phase_shift):
|
40 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
41 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
42 |
+
return transmitted_signal
|
43 |
+
|
44 |
+
# Create a time array
|
45 |
+
time = np.linspace(0, 1, time_steps)
|
46 |
+
|
47 |
+
# Generate SPWM Signal
|
48 |
+
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
|
49 |
+
|
50 |
+
# Store the data using infrared voltage energy
|
51 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
52 |
+
|
53 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
54 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
55 |
+
|
56 |
+
# Plot the SPWM signal, stored signal, and transmitted signal
|
57 |
+
plt.figure(figsize=(15, 8))
|
58 |
+
|
59 |
+
plt.subplot(3, 1, 1)
|
60 |
+
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
|
61 |
+
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
|
62 |
+
plt.xlabel('Time (s)')
|
63 |
+
plt.ylabel('Amplitude')
|
64 |
+
plt.grid(True)
|
65 |
+
plt.legend()
|
66 |
+
|
67 |
+
plt.subplot(3, 1, 2)
|
68 |
+
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
|
69 |
+
plt.title('Data Stored using Infrared Voltage Energy')
|
70 |
+
plt.xlabel('Time (s)')
|
71 |
+
plt.ylabel('Voltage')
|
72 |
+
plt.grid(True)
|
73 |
+
plt.legend()
|
74 |
+
|
75 |
+
plt.subplot(3, 1, 3)
|
76 |
+
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
|
77 |
+
plt.title('Transmitted Signal towards a Given Direction')
|
78 |
+
plt.xlabel('Time (s)')
|
79 |
+
plt.ylabel('Amplitude')
|
80 |
+
plt.grid(True)
|
81 |
+
plt.legend()
|
82 |
+
|
83 |
+
plt.tight_layout()
|
84 |
+
plt.show()
|
85 |
+
|
86 |
+
import torch
|
87 |
+
import torch.nn as nn
|
88 |
+
import numpy as np
|
89 |
+
import matplotlib.pyplot as plt
|
90 |
+
|
91 |
+
# Parameters
|
92 |
+
num_nodes = 100
|
93 |
+
time_steps = 1000 # Number of time steps for signal generation
|
94 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
95 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
96 |
+
sampling_rate = 1000 # Samples per second
|
97 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
98 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
99 |
+
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
|
100 |
+
noise_intensity = 0.2 # Intensity of noise to simulate interference
|
101 |
+
multi_path_delay = 50 # Delay for multi-path effect in number of samples
|
102 |
+
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
|
103 |
+
|
104 |
+
# SPWM Signal Generation
|
105 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
106 |
+
# Generate a sinusoidal signal
|
107 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
108 |
+
# Generate PWM signal based on the sinusoidal signal
|
109 |
+
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
|
110 |
+
return pwm_signal
|
111 |
+
|
112 |
+
# Infrared Energy Storage
|
113 |
+
def infrared_storage(pwm_signal, voltage):
|
114 |
+
# Simulate storing data using infrared voltage energy
|
115 |
+
stored_signal = pwm_signal * voltage
|
116 |
+
return stored_signal
|
117 |
+
|
118 |
+
# Directional Transmission (simulating by a shift in phase)
|
119 |
+
def directional_transmission(stored_signal, phase_shift):
|
120 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
121 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
122 |
+
return transmitted_signal
|
123 |
+
|
124 |
+
# Signal Attenuation in Dense Space
|
125 |
+
def attenuate_signal(signal, attenuation_factor):
|
126 |
+
# Apply exponential decay to simulate attenuation
|
127 |
+
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
|
128 |
+
attenuated_signal = signal * attenuation
|
129 |
+
return attenuated_signal
|
130 |
+
|
131 |
+
# Add Noise to Simulate Interference
|
132 |
+
def add_noise(signal, noise_intensity):
|
133 |
+
noise = noise_intensity * np.random.randn(len(signal))
|
134 |
+
noisy_signal = signal + noise
|
135 |
+
return noisy_signal
|
136 |
+
|
137 |
+
# Apply Multi-Path Effects
|
138 |
+
def multi_path_effects(signal, delay, amplitude):
|
139 |
+
delayed_signal = np.roll(signal, delay) * amplitude
|
140 |
+
combined_signal = signal + delayed_signal
|
141 |
+
return combined_signal
|
142 |
+
|
143 |
+
# Create a time array
|
144 |
+
time = np.linspace(0, 1, time_steps)
|
145 |
+
|
146 |
+
# Generate SPWM Signal
|
147 |
+
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
|
148 |
+
|
149 |
+
# Store the data using infrared voltage energy
|
150 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
151 |
+
|
152 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
153 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
154 |
+
|
155 |
+
# Attenuate the signal in a densely populated space
|
156 |
+
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
|
157 |
+
|
158 |
+
# Add noise to the signal
|
159 |
+
noisy_signal = add_noise(attenuated_signal, noise_intensity)
|
160 |
+
|
161 |
+
# Apply multi-path effects
|
162 |
+
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
|
163 |
+
|
164 |
+
# Plot the SPWM signal, stored signal, transmitted signal, and final signal
|
165 |
+
plt.figure(figsize=(15, 12))
|
166 |
+
|
167 |
+
plt.subplot(4, 1, 1)
|
168 |
+
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
|
169 |
+
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
|
170 |
+
plt.xlabel('Time (s)')
|
171 |
+
plt.ylabel('Amplitude')
|
172 |
+
plt.grid(True)
|
173 |
+
plt.legend()
|
174 |
+
|
175 |
+
plt.subplot(4, 1, 2)
|
176 |
+
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
|
177 |
+
plt.title('Data Stored using Infrared Voltage Energy')
|
178 |
+
plt.xlabel('Time (s)')
|
179 |
+
plt.ylabel('Voltage')
|
180 |
+
plt.grid(True)
|
181 |
+
plt.legend()
|
182 |
+
|
183 |
+
plt.subplot(4, 1, 3)
|
184 |
+
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
|
185 |
+
plt.title('Transmitted Signal towards a Given Direction')
|
186 |
+
plt.xlabel('Time (s)')
|
187 |
+
plt.ylabel('Amplitude')
|
188 |
+
plt.grid(True)
|
189 |
+
plt.legend()
|
190 |
+
|
191 |
+
plt.subplot(4, 1, 4)
|
192 |
+
plt.plot(time, final_signal, color='purple', label='Final Signal with Attenuation, Noise, and Multi-Path Effects')
|
193 |
+
plt.title('Final Signal in Dense Space')
|
194 |
+
plt.xlabel('Time (s)')
|
195 |
+
plt.ylabel('Amplitude')
|
196 |
+
plt.grid(True)
|
197 |
+
plt.legend()
|
198 |
+
|
199 |
+
plt.tight_layout()
|
200 |
+
plt.show()
|
201 |
+
|
202 |
+
import torch
|
203 |
+
import torch.nn as nn
|
204 |
+
import numpy as np
|
205 |
+
import matplotlib.pyplot as plt
|
206 |
+
from matplotlib.animation import FuncAnimation
|
207 |
+
|
208 |
+
# Parameters
|
209 |
+
num_nodes = 100
|
210 |
+
time_steps = 1000 # Number of time steps for signal generation
|
211 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
212 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
213 |
+
sampling_rate = 1000 # Samples per second
|
214 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
215 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
216 |
+
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
|
217 |
+
noise_intensity = 0.2 # Intensity of noise to simulate interference
|
218 |
+
multi_path_delay = 50 # Delay for multi-path effect in number of samples
|
219 |
+
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
|
220 |
+
|
221 |
+
# SPWM Signal Generation
|
222 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
223 |
+
# Generate a sinusoidal signal
|
224 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
225 |
+
# Generate PWM signal based on the sinusoidal signal
|
226 |
+
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
|
227 |
+
return pwm_signal
|
228 |
+
|
229 |
+
# Infrared Energy Storage
|
230 |
+
def infrared_storage(pwm_signal, voltage):
|
231 |
+
# Simulate storing data using infrared voltage energy
|
232 |
+
stored_signal = pwm_signal * voltage
|
233 |
+
return stored_signal
|
234 |
+
|
235 |
+
# Directional Transmission (simulating by a shift in phase)
|
236 |
+
def directional_transmission(stored_signal, phase_shift):
|
237 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
238 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
239 |
+
return transmitted_signal
|
240 |
+
|
241 |
+
# Signal Attenuation in Dense Space
|
242 |
+
def attenuate_signal(signal, attenuation_factor):
|
243 |
+
# Apply exponential decay to simulate attenuation
|
244 |
+
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
|
245 |
+
attenuated_signal = signal * attenuation
|
246 |
+
return attenuated_signal
|
247 |
+
|
248 |
+
# Add Noise to Simulate Interference
|
249 |
+
def add_noise(signal, noise_intensity):
|
250 |
+
noise = noise_intensity * np.random.randn(len(signal))
|
251 |
+
noisy_signal = signal + noise
|
252 |
+
return noisy_signal
|
253 |
+
|
254 |
+
# Apply Multi-Path Effects
|
255 |
+
def multi_path_effects(signal, delay, amplitude):
|
256 |
+
delayed_signal = np.roll(signal, delay) * amplitude
|
257 |
+
combined_signal = signal + delayed_signal
|
258 |
+
return combined_signal
|
259 |
+
|
260 |
+
# Create a time array
|
261 |
+
time = np.linspace(0, 1, time_steps)
|
262 |
+
|
263 |
+
# Generate SPWM Signal
|
264 |
+
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
|
265 |
+
|
266 |
+
# Store the data using infrared voltage energy
|
267 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
268 |
+
|
269 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
270 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
271 |
+
|
272 |
+
# Attenuate the signal in a densely populated space
|
273 |
+
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
|
274 |
+
|
275 |
+
# Add noise to the signal
|
276 |
+
noisy_signal = add_noise(attenuated_signal, noise_intensity)
|
277 |
+
|
278 |
+
# Apply multi-path effects
|
279 |
+
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
|
280 |
+
|
281 |
+
# Plot the animated signal
|
282 |
+
fig, ax = plt.subplots(figsize=(15, 6))
|
283 |
+
line, = ax.plot([], [], color='purple')
|
284 |
+
ax.set_xlim(0, time_steps)
|
285 |
+
ax.set_ylim(-1.5, 1.5)
|
286 |
+
ax.set_title('Animated Signal Transmission')
|
287 |
+
ax.set_xlabel('Time Step')
|
288 |
+
ax.set_ylabel('Amplitude')
|
289 |
+
ax.grid(True)
|
290 |
+
|
291 |
+
# Animation function to update the frame
|
292 |
+
def animate(frame):
|
293 |
+
# Update the signal to show propagation over time
|
294 |
+
current_signal = np.roll(final_signal, frame)
|
295 |
+
line.set_data(np.arange(len(current_signal)), current_signal)
|
296 |
+
return line,
|
297 |
+
|
298 |
+
# Create the animation
|
299 |
+
ani = FuncAnimation(fig, animate, frames=time_steps, interval=20, blit=True)
|
300 |
+
|
301 |
+
# Show the animation
|
302 |
+
plt.show()
|
303 |
+
|
304 |
+
import torch
|
305 |
+
import torch.nn as nn
|
306 |
+
import numpy as np
|
307 |
+
import matplotlib.pyplot as plt
|
308 |
+
from matplotlib.animation import FuncAnimation
|
309 |
+
|
310 |
+
# Parameters
|
311 |
+
num_nodes = 100
|
312 |
+
time_steps = 1000 # Number of time steps for signal generation
|
313 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
314 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
315 |
+
sampling_rate = 1000 # Samples per second
|
316 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
317 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
318 |
+
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
|
319 |
+
noise_intensity = 0.2 # Intensity of noise to simulate interference
|
320 |
+
multi_path_delay = 50 # Delay for multi-path effect in number of samples
|
321 |
+
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
|
322 |
+
|
323 |
+
# Encryption parameters
|
324 |
+
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
|
325 |
+
|
326 |
+
# SPWM Signal Generation
|
327 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
328 |
+
# Generate a sinusoidal signal
|
329 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
330 |
+
# Generate PWM signal based on the sinusoidal signal
|
331 |
+
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
|
332 |
+
return pwm_signal
|
333 |
+
|
334 |
+
# Infrared Energy Storage
|
335 |
+
def infrared_storage(pwm_signal, voltage):
|
336 |
+
# Simulate storing data using infrared voltage energy
|
337 |
+
stored_signal = pwm_signal * voltage
|
338 |
+
return stored_signal
|
339 |
+
|
340 |
+
# Directional Transmission (simulating by a shift in phase)
|
341 |
+
def directional_transmission(stored_signal, phase_shift):
|
342 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
343 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
344 |
+
return transmitted_signal
|
345 |
+
|
346 |
+
# Signal Attenuation in Dense Space
|
347 |
+
def attenuate_signal(signal, attenuation_factor):
|
348 |
+
# Apply exponential decay to simulate attenuation
|
349 |
+
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
|
350 |
+
attenuated_signal = signal * attenuation
|
351 |
+
return attenuated_signal
|
352 |
+
|
353 |
+
# Add Noise to Simulate Interference
|
354 |
+
def add_noise(signal, noise_intensity):
|
355 |
+
noise = noise_intensity * np.random.randn(len(signal))
|
356 |
+
noisy_signal = signal + noise
|
357 |
+
return noisy_signal
|
358 |
+
|
359 |
+
# Apply Multi-Path Effects
|
360 |
+
def multi_path_effects(signal, delay, amplitude):
|
361 |
+
delayed_signal = np.roll(signal, delay) * amplitude
|
362 |
+
combined_signal = signal + delayed_signal
|
363 |
+
return combined_signal
|
364 |
+
|
365 |
+
# Layered Encryption
|
366 |
+
def layered_encryption(signal, keys):
|
367 |
+
encrypted_signal = signal.copy()
|
368 |
+
for key in keys:
|
369 |
+
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
|
370 |
+
return encrypted_signal
|
371 |
+
|
372 |
+
# Layered Decryption
|
373 |
+
def layered_decryption(encrypted_signal, keys):
|
374 |
+
decrypted_signal = encrypted_signal.copy()
|
375 |
+
for key in reversed(keys):
|
376 |
+
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
|
377 |
+
return decrypted_signal
|
378 |
+
|
379 |
+
# Create a time array
|
380 |
+
time = np.linspace(0, 1, time_steps)
|
381 |
+
|
382 |
+
# Generate SPWM Signal
|
383 |
+
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
|
384 |
+
|
385 |
+
# Store the data using infrared voltage energy
|
386 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
387 |
+
|
388 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
389 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
390 |
+
|
391 |
+
# Attenuate the signal in a densely populated space
|
392 |
+
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
|
393 |
+
|
394 |
+
# Add noise to the signal
|
395 |
+
noisy_signal = add_noise(attenuated_signal, noise_intensity)
|
396 |
+
|
397 |
+
# Apply multi-path effects
|
398 |
+
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
|
399 |
+
|
400 |
+
# Encrypt the final signal with layered VPN-like encryption
|
401 |
+
encrypted_signal = layered_encryption(final_signal, encryption_keys)
|
402 |
+
|
403 |
+
# Decrypt the signal for verification
|
404 |
+
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
|
405 |
+
|
406 |
+
# Plot the encrypted signal and decrypted signal
|
407 |
+
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
|
408 |
+
|
409 |
+
# Plot Encrypted Signal
|
410 |
+
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
|
411 |
+
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
|
412 |
+
ax[0].set_xlabel('Time Step')
|
413 |
+
ax[0].set_ylabel('Amplitude')
|
414 |
+
ax[0].grid(True)
|
415 |
+
|
416 |
+
# Plot Decrypted Signal
|
417 |
+
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
|
418 |
+
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
|
419 |
+
ax[1].set_xlabel('Time Step')
|
420 |
+
ax[1].set_ylabel('Amplitude')
|
421 |
+
ax[1].grid(True)
|
422 |
+
|
423 |
+
plt.tight_layout()
|
424 |
+
plt.show()
|
425 |
+
|
426 |
+
import torch
|
427 |
+
import torch.nn as nn
|
428 |
+
import numpy as np
|
429 |
+
import matplotlib.pyplot as plt
|
430 |
+
from matplotlib.animation import FuncAnimation
|
431 |
+
|
432 |
+
# Parameters
|
433 |
+
num_nodes = 100
|
434 |
+
time_steps = 1000 # Number of time steps for signal generation
|
435 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
436 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
437 |
+
sampling_rate = 1000 # Samples per second
|
438 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
439 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
440 |
+
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
|
441 |
+
noise_intensity = 0.2 # Intensity of noise to simulate interference
|
442 |
+
multi_path_delay = 50 # Delay for multi-path effect in number of samples
|
443 |
+
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
|
444 |
+
|
445 |
+
# Encryption parameters
|
446 |
+
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
|
447 |
+
|
448 |
+
# SPWM Signal Generation
|
449 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
450 |
+
# Generate a sinusoidal signal
|
451 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
452 |
+
# Generate PWM signal based on the sinusoidal signal
|
453 |
+
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
|
454 |
+
return pwm_signal
|
455 |
+
|
456 |
+
# Infrared Energy Storage
|
457 |
+
def infrared_storage(pwm_signal, voltage):
|
458 |
+
# Simulate storing data using infrared voltage energy
|
459 |
+
stored_signal = pwm_signal * voltage
|
460 |
+
return stored_signal
|
461 |
+
|
462 |
+
# Directional Transmission (simulating by a shift in phase)
|
463 |
+
def directional_transmission(stored_signal, phase_shift):
|
464 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
465 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
466 |
+
return transmitted_signal
|
467 |
+
|
468 |
+
# Signal Attenuation in Dense Space
|
469 |
+
def attenuate_signal(signal, attenuation_factor):
|
470 |
+
# Apply exponential decay to simulate attenuation
|
471 |
+
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
|
472 |
+
attenuated_signal = signal * attenuation
|
473 |
+
return attenuated_signal
|
474 |
+
|
475 |
+
# Add Noise to Simulate Interference
|
476 |
+
def add_noise(signal, noise_intensity):
|
477 |
+
noise = noise_intensity * np.random.randn(len(signal))
|
478 |
+
noisy_signal = signal + noise
|
479 |
+
return noisy_signal
|
480 |
+
|
481 |
+
# Apply Multi-Path Effects
|
482 |
+
def multi_path_effects(signal, delay, amplitude):
|
483 |
+
delayed_signal = np.roll(signal, delay) * amplitude
|
484 |
+
combined_signal = signal + delayed_signal
|
485 |
+
return combined_signal
|
486 |
+
|
487 |
+
# Layered Encryption
|
488 |
+
def layered_encryption(signal, keys):
|
489 |
+
encrypted_signal = signal.copy()
|
490 |
+
for key in keys:
|
491 |
+
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
|
492 |
+
return encrypted_signal
|
493 |
+
|
494 |
+
# Layered Decryption
|
495 |
+
def layered_decryption(encrypted_signal, keys):
|
496 |
+
decrypted_signal = encrypted_signal.copy()
|
497 |
+
for key in reversed(keys):
|
498 |
+
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
|
499 |
+
return decrypted_signal
|
500 |
+
|
501 |
+
# Create a time array
|
502 |
+
time = np.linspace(0, 1, time_steps)
|
503 |
+
|
504 |
+
# Generate SPWM Signal
|
505 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
506 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
507 |
+
threshold = np.mean(sine_wave) # Use mean of sine wave as threshold
|
508 |
+
pwm_signal = np.where(sine_wave > threshold, 1, 0)
|
509 |
+
return pwm_signal
|
510 |
+
|
511 |
+
# Store the data using infrared voltage energy
|
512 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
513 |
+
|
514 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
515 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
516 |
+
|
517 |
+
# Attenuate the signal in a densely populated space
|
518 |
+
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
|
519 |
+
|
520 |
+
# Add noise to the signal
|
521 |
+
noisy_signal = add_noise(attenuated_signal, noise_intensity)
|
522 |
+
|
523 |
+
# Apply multi-path effects
|
524 |
+
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
|
525 |
+
|
526 |
+
# Encrypt the final signal with layered VPN-like encryption
|
527 |
+
encrypted_signal = layered_encryption(final_signal, encryption_keys)
|
528 |
+
|
529 |
+
# Decrypt the signal for verification
|
530 |
+
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
|
531 |
+
|
532 |
+
# Plot the encrypted signal and decrypted signal
|
533 |
+
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
|
534 |
+
|
535 |
+
# Plot Encrypted Signal
|
536 |
+
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
|
537 |
+
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
|
538 |
+
ax[0].set_xlabel('Time Step')
|
539 |
+
ax[0].set_ylabel('Amplitude')
|
540 |
+
ax[0].grid(True)
|
541 |
+
|
542 |
+
# Plot Decrypted Signal
|
543 |
+
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
|
544 |
+
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
|
545 |
+
ax[1].set_xlabel('Time Step')
|
546 |
+
ax[1].set_ylabel('Amplitude')
|
547 |
+
ax[1].grid(True)
|
548 |
+
|
549 |
+
plt.tight_layout()
|
550 |
+
plt.show()
|
551 |
+
|
552 |
+
import torch
|
553 |
+
import torch.nn as nn
|
554 |
+
import numpy as np
|
555 |
+
import matplotlib.pyplot as plt
|
556 |
+
from matplotlib.animation import FuncAnimation
|
557 |
+
|
558 |
+
# Parameters
|
559 |
+
num_nodes = 100
|
560 |
+
time_steps = 1000 # Number of time steps for signal generation
|
561 |
+
frequency = 1 # Frequency of the sinusoidal wave (Hz)
|
562 |
+
amplitude = 1.0 # Amplitude of the sinusoidal wave
|
563 |
+
sampling_rate = 1000 # Samples per second
|
564 |
+
infrared_voltage = 0.7 # Simulated infrared voltage for storage
|
565 |
+
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
|
566 |
+
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
|
567 |
+
noise_intensity = 0.2 # Intensity of noise to simulate interference
|
568 |
+
multi_path_delay = 50 # Delay for multi-path effect in number of samples
|
569 |
+
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
|
570 |
+
|
571 |
+
# Encryption parameters
|
572 |
+
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
|
573 |
+
|
574 |
+
# SPWM Signal Generation
|
575 |
+
def generate_spwm_signal(time, frequency, amplitude):
|
576 |
+
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
|
577 |
+
threshold = np.mean(sine_wave) # Use mean of sine wave as threshold
|
578 |
+
pwm_signal = np.where(sine_wave > threshold, 1, 0)
|
579 |
+
return pwm_signal
|
580 |
+
|
581 |
+
# Infrared Energy Storage
|
582 |
+
def infrared_storage(pwm_signal, voltage):
|
583 |
+
# Simulate storing data using infrared voltage energy
|
584 |
+
stored_signal = pwm_signal * voltage
|
585 |
+
return stored_signal
|
586 |
+
|
587 |
+
# Directional Transmission (simulating by a shift in phase)
|
588 |
+
def directional_transmission(stored_signal, phase_shift):
|
589 |
+
# Apply a phase shift to simulate transmission towards a given direction
|
590 |
+
transmitted_signal = np.roll(stored_signal, phase_shift)
|
591 |
+
return transmitted_signal
|
592 |
+
|
593 |
+
# Signal Attenuation in Dense Space
|
594 |
+
def attenuate_signal(signal, attenuation_factor):
|
595 |
+
# Use a more accurate model for attenuation
|
596 |
+
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
|
597 |
+
attenuated_signal = signal * attenuation
|
598 |
+
return attenuated_signal
|
599 |
+
|
600 |
+
# Add Noise to Simulate Interference
|
601 |
+
def add_noise(signal, noise_intensity):
|
602 |
+
noise = noise_intensity * np.random.randn(len(signal))
|
603 |
+
noisy_signal = signal + noise
|
604 |
+
return noisy_signal
|
605 |
+
|
606 |
+
# Apply Multi-Path Effects
|
607 |
+
def multi_path_effects(signal, delay, amplitude):
|
608 |
+
delayed_signal = np.roll(signal, delay) * amplitude
|
609 |
+
combined_signal = signal + delayed_signal
|
610 |
+
return combined_signal
|
611 |
+
|
612 |
+
# Layered Encryption
|
613 |
+
def layered_encryption(signal, keys):
|
614 |
+
encrypted_signal = signal.copy()
|
615 |
+
for key in keys:
|
616 |
+
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
|
617 |
+
return encrypted_signal
|
618 |
+
|
619 |
+
# Layered Decryption
|
620 |
+
def layered_decryption(encrypted_signal, keys):
|
621 |
+
decrypted_signal = encrypted_signal.copy()
|
622 |
+
for key in reversed(keys):
|
623 |
+
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
|
624 |
+
return decrypted_signal
|
625 |
+
|
626 |
+
# Validate encryption and decryption
|
627 |
+
def validate_encryption(original_signal, encrypted_signal, decrypted_signal):
|
628 |
+
assert np.allclose(original_signal, decrypted_signal, atol=1e-2), "Decryption failed to recover the original signal."
|
629 |
+
|
630 |
+
|
631 |
+
# Create a time array
|
632 |
+
time = np.linspace(0, 1, time_steps)
|
633 |
+
|
634 |
+
# Generate SPWM Signal
|
635 |
+
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
|
636 |
+
|
637 |
+
# Store the data using infrared voltage energy
|
638 |
+
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
|
639 |
+
|
640 |
+
# Transmit the signal towards a given direction (simulate by shifting phase)
|
641 |
+
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
|
642 |
+
|
643 |
+
# Attenuate the signal in a densely populated space
|
644 |
+
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
|
645 |
+
|
646 |
+
# Add noise to the signal
|
647 |
+
noisy_signal = add_noise(attenuated_signal, noise_intensity)
|
648 |
+
|
649 |
+
# Apply multi-path effects
|
650 |
+
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
|
651 |
+
|
652 |
+
# Encrypt the final signal with layered VPN-like encryption
|
653 |
+
encrypted_signal = layered_encryption(final_signal, encryption_keys)
|
654 |
+
|
655 |
+
# Decrypt the signal for verification
|
656 |
+
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
|
657 |
+
|
658 |
+
# Plot the encrypted signal and decrypted signal
|
659 |
+
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
|
660 |
+
|
661 |
+
# Plot Encrypted Signal
|
662 |
+
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
|
663 |
+
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
|
664 |
+
ax[0].set_xlabel('Time Step')
|
665 |
+
ax[0].set_ylabel('Amplitude')
|
666 |
+
ax[0].grid(True)
|
667 |
+
|
668 |
+
# Plot Decrypted Signal
|
669 |
+
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
|
670 |
+
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
|
671 |
+
ax[1].set_xlabel('Time Step')
|
672 |
+
ax[1].set_ylabel('Amplitude')
|
673 |
+
ax[1].grid(True)
|
674 |
+
|
675 |
+
plt.tight_layout()
|
676 |
+
plt.show()
|
677 |
+
|
678 |
+
import matplotlib.pyplot as plt
|
679 |
+
import numpy as np
|
680 |
+
|
681 |
+
# Function to create a gradient color effect
|
682 |
+
def gradient_color(signal, cmap='viridis'):
|
683 |
+
norm = plt.Normalize(signal.min(), signal.max())
|
684 |
+
colors = plt.get_cmap(cmap)(norm(signal))
|
685 |
+
return colors
|
686 |
+
|
687 |
+
# Create a time array
|
688 |
+
time = np.arange(len(final_signal))
|
689 |
+
|
690 |
+
# Generate gradient colors based on final signal
|
691 |
+
colors = gradient_color(final_signal)
|
692 |
+
|
693 |
+
# Plot the final signal with reflection effect
|
694 |
+
fig, ax = plt.subplots(figsize=(15, 6))
|
695 |
+
|
696 |
+
# Plot the final signal
|
697 |
+
ax.plot(time, final_signal, color='blue', label='Final Signal')
|
698 |
+
|
699 |
+
# Add reflection effect
|
700 |
+
reflection_factor = 0.3
|
701 |
+
reflection = final_signal * reflection_factor
|
702 |
+
reflection_color = 'lightblue'
|
703 |
+
|
704 |
+
# Plot the reflection
|
705 |
+
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')
|
706 |
+
|
707 |
+
# Add color gradient
|
708 |
+
for i in range(len(final_signal) - 1):
|
709 |
+
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
|
710 |
+
|
711 |
+
# Enhance the plot
|
712 |
+
ax.set_title('Final Signal with Reflection and Color Gradient')
|
713 |
+
ax.set_xlabel('Time Step')
|
714 |
+
ax.set_ylabel('Amplitude')
|
715 |
+
ax.legend()
|
716 |
+
ax.grid(True)
|
717 |
+
|
718 |
+
plt.show()
|
719 |
+
|
720 |
+
import matplotlib.pyplot as plt
|
721 |
+
import numpy as np
|
722 |
+
import matplotlib.colors as mcolors
|
723 |
+
|
724 |
+
# Function to create a gradient color effect
|
725 |
+
def gradient_color(signal, cmap='viridis'):
|
726 |
+
norm = plt.Normalize(signal.min(), signal.max())
|
727 |
+
colors = plt.get_cmap(cmap)(norm(signal))
|
728 |
+
return colors
|
729 |
+
|
730 |
+
# Create a time array
|
731 |
+
time = np.arange(len(final_signal))
|
732 |
+
|
733 |
+
# Generate gradient colors based on final signal
|
734 |
+
colors = gradient_color(final_signal)
|
735 |
+
|
736 |
+
# Plot the final signal with reflection effect
|
737 |
+
fig, ax = plt.subplots(figsize=(15, 6))
|
738 |
+
|
739 |
+
# Create a smooth line plot with color transitions
|
740 |
+
for i in range(len(final_signal) - 1):
|
741 |
+
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
|
742 |
+
|
743 |
+
# Add the final signal plot
|
744 |
+
ax.plot(time, final_signal, color='blue', alpha=0.5, label='Final Signal')
|
745 |
+
|
746 |
+
# Add reflection effect
|
747 |
+
reflection_factor = 0.3
|
748 |
+
reflection = final_signal * reflection_factor
|
749 |
+
reflection_color = 'lightblue'
|
750 |
+
|
751 |
+
# Plot the reflection
|
752 |
+
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')
|
753 |
+
|
754 |
+
# Enhance the plot
|
755 |
+
ax.set_title('PulseWavefront')
|
756 |
+
ax.set_xlabel('Time Step')
|
757 |
+
ax.set_ylabel('Amplitude')
|
758 |
+
ax.legend()
|
759 |
+
ax.grid(True)
|
760 |
+
|
761 |
+
plt.show()
|