Upload securecyphercreditcardanalysis_space.py
Browse files
securecyphercreditcardanalysis_space.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""securecyphercreditcardanalysis.space
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1WKtvyEIBM5bPAPOmwXTGkEAp8mSFNKii
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
import os
|
14 |
+
for dirname, _, filenames in os.walk('/kaggle/input'):
|
15 |
+
for filename in filenames:
|
16 |
+
print(os.path.join(dirname, filename))
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import pandas as pd
|
20 |
+
from sklearn.preprocessing import StandardScaler
|
21 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
22 |
+
from sklearn.svm import SVC
|
23 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
24 |
+
import joblib
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
|
27 |
+
input = pd.read_csv('/content/credit_card_fraud_synthetic.csv')
|
28 |
+
|
29 |
+
data = input.drop(['Timestamp', 'Transaction_Type', 'Location', 'Transaction_ID'], axis = 1)
|
30 |
+
|
31 |
+
data
|
32 |
+
|
33 |
+
y = data['Is_Fraudulent']
|
34 |
+
x = data.drop('Is_Fraudulent', axis = 1)
|
35 |
+
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
|
36 |
+
|
37 |
+
svm_model = SVC(kernel='rbf')
|
38 |
+
svm_model.fit(X_train, y_train)
|
39 |
+
|
40 |
+
y_pred = svm_model.predict(X_test)
|
41 |
+
|
42 |
+
print("Confusion Matrix:")
|
43 |
+
print(confusion_matrix(y_test, y_pred))
|
44 |
+
|
45 |
+
print("Classification Report:")
|
46 |
+
print(classification_report(y_test, y_pred))
|
47 |
+
|
48 |
+
from sklearn.metrics import accuracy_score
|
49 |
+
Accu = accuracy_score(y_test, y_pred)
|
50 |
+
Accu = Accu * 100
|
51 |
+
print("The Accuracy of the model is ", round(Accu, 2), "%")
|