File size: 36,307 Bytes
91fd485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity

num_consumers = 10
interest_size = 5
wealth_size = 1
feature_size = interest_size + wealth_size

consumer_profiles = torch.rand((num_consumers, feature_size))

interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]

class WealthTransferNet(nn.Module):
  def __init__(self):
    super(WealthTransferNet, self).__init__()
    self.fc1 = nn.Linear(wealth_size, wealth_size)

  # The forward function is now correctly defined as a method of the class
  def forward(self, x):
    return self.fc1(x)

net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)

# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)

# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)

# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]

# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
    consumer_a, consumer_b = pair

    # Get wealth data for the pair
    wealth_a = wealth_data[consumer_a]
    wealth_b = wealth_data[consumer_b]

    # Train the network to transfer wealth between matched consumers
    for epoch in range(100):
        optimizer.zero_grad()
        transferred_wealth_a = net(wealth_a)
        transferred_wealth_b = net(wealth_b)

        # Simulate bidirectional transfer: A to B and B to A
        loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
        loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
        total_loss = loss_a_to_b + loss_b_to_a

        total_loss.backward()
        optimizer.step()

# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)

# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity

# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5  # Number of interests
wealth_size = 1  # Each consumer has one wealth data point
feature_size = interest_size + wealth_size  # Total feature size

# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))

# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]

# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(wealth_size, wealth_size)

    def forward(self, x):
        return self.fc1(x)

# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
    def __init__(self, encryption_key):
        super(VPNLayer, self).__init__()
        self.encryption_key = encryption_key  # Simulate encryption key

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (this is our 'authentication')
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)

# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)

# Try to access the encrypted data with the correct passcode
try:
    decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
    print("Access Granted. Decrypted Consumer Data:")
    print(decrypted_profiles)
except ValueError as e:
    print(e)

# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)

try:
    decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
    print(e)

# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)

# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)

# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)

# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]

# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
    consumer_a, consumer_b = pair

    # Get wealth data for the pair
    wealth_a = wealth_data[consumer_a]
    wealth_b = wealth_data[consumer_b]

    # Train the network to transfer wealth between matched consumers
    for epoch in range(100):
        optimizer.zero_grad()
        transferred_wealth_a = net(wealth_a)
        transferred_wealth_b = net(wealth_b)

        # Simulate bidirectional transfer: A to B and B to A
        loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
        loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
        total_loss = loss_a_to_b + loss_b_to_a

        total_loss.backward()
        optimizer.step()

# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)

# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity

# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5  # Number of interests
wealth_size = 1  # Each consumer has one wealth data point
feature_size = interest_size + wealth_size  # Total feature size

# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))

# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]

# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(wealth_size, wealth_size)

    def forward(self, x):
        return self.fc1(x)

# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
    def __init__(self, encryption_key):
        super(VPNLayer, self).__init__()
        self.encryption_key = encryption_key  # Simulate encryption key

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (this is our 'authentication')
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)

# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)

# Try to access the encrypted data with the correct passcode
try:
    decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
    print("Access Granted. Decrypted Consumer Data:")
    print(decrypted_profiles)
except ValueError as e:
    print(e)

# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)

try:
    decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
    print(e)

# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)

# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)

# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)

# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]

# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
    consumer_a, consumer_b = pair

    # Get wealth data for the pair
    wealth_a = wealth_data[consumer_a]
    wealth_b = wealth_data[consumer_b]

    # Train the network to transfer wealth between matched consumers
    for epoch in range(100):
        optimizer.zero_grad()
        transferred_wealth_a = net(wealth_a)
        transferred_wealth_b = net(wealth_b)

        # Simulate bidirectional transfer: A to B and B to A
        loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
        loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
        total_loss = loss_a_to_b + loss_b_to_a

        total_loss.backward()
        optimizer.step()

# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)

# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("FortuneArch")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import time
import numpy as np

# Define the number of mobile receivers
num_receivers = 5

# Define the size of the data packets
data_packet_size = 256

# Simulate high-speed data transmission by creating data packets
def generate_data_packet(size):
    return torch.rand(size)

# Simulate a mobile receiver processing the data
class MobileReceiver(nn.Module):
    def __init__(self):
        super(MobileReceiver, self).__init__()
        self.fc1 = nn.Linear(data_packet_size, data_packet_size)

    def forward(self, data):
        processed_data = torch.relu(self.fc1(data))
        return processed_data

# Instantiate the mobile receivers
receivers = [MobileReceiver() for _ in range(num_receivers)]

# Define a function to simulate instantaneous transmission to all receivers
def transmit_data_to_receivers(data_packet, receivers):
    received_data = []

    # Start timing to simulate high-speed transmission
    start_time = time.time()

    # Transmit the data packet to each receiver
    for receiver in receivers:
        received_packet = receiver(data_packet)
        received_data.append(received_packet)

    # End timing
    end_time = time.time()

    transmission_time = end_time - start_time
    print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds")

    return received_data

# Generate a random data packet
data_packet = generate_data_packet(data_packet_size)

# Simulate data transmission to the receivers
received_data = transmit_data_to_receivers(data_packet, receivers)

# Display results
print(f"Original Data Packet (Sample):\n {data_packet[:5]}")
print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}")

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define the Bank Account class
class BankAccount:
    def __init__(self, account_number, balance=0.0):
        self.account_number = account_number
        self.balance = balance

    def deposit(self, amount):
        self.balance += amount

    def get_balance(self):
        return self.balance

# Define a VPN layer for data encryption and passcode check
class VPNLayer:
    def __init__(self, encryption_key):
        self.encryption_key = encryption_key  # Simulate encryption key
        self.data_storage = {}

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (authentication)
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

    def store_data(self, data, consumer_id):
        encrypted_data = self.encrypt_data(data)
        self.data_storage[consumer_id] = encrypted_data

    def retrieve_data(self, consumer_id, passcode):
        if consumer_id in self.data_storage:
            return self.decrypt_data(self.data_storage[consumer_id], passcode)
        else:
            raise ValueError("Consumer ID not found!")

# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
    t = torch.linspace(0, 2 * np.pi, size)
    waveform = amplitude * torch.sin(frequency * t + phase)
    return waveform

# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(1, 1)  # Simple linear layer for wealth transfer

    def forward(self, x):
        return self.fc1(x)

# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
    # Ensure the waveform represents positive wealth for transfer
    wealth_amount = torch.sum(waveform[waveform > 0]).item()

    # Instantiate the wealth transfer network
    net = WealthTransferNet()

    # Create a tensor for the wealth amount
    input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Train the network (for demonstration, no real training here)
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    criterion = nn.MSELoss()

    # Dummy target for training (for simulation purpose)
    target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Simulate the transfer process
    for epoch in range(100):  # Simulating a few training epochs
        optimizer.zero_grad()
        output = net(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

    # Transfer the wealth to the target account
    target_account.deposit(wealth_amount)

    return wealth_amount

# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
    def __init__(self, waveform):
        self.waveform = waveform

    def transmit(self):
        # Simulate transmission through space (in this case, just return the waveform)
        print("Transmitting infrared signal...")
        return self.waveform

# Define a receiver to detect infrared signals
class SignalReceiver:
    def __init__(self):
        self.received_data = None

    def receive(self, signal):
        print("Receiving signal...")
        self.received_data = signal
        print("Signal received.")

    def decode(self):
        # For simplicity, return the received data directly
        return self.received_data

# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0

# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)

# Create a target bank account
target_account = BankAccount(account_number="1234567890")

# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)

# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)

try:
    retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)

    # Create an infrared signal to transmit the wealth waveform
    infrared_signal = InfraredSignal(retrieved_waveform)

    # Transmit the signal
    transmitted_signal = infrared_signal.transmit()

    # Create a receiver and receive the signal
    signal_receiver = SignalReceiver()
    signal_receiver.receive(transmitted_signal)

    # Decode the received signal
    decoded_waveform = signal_receiver.decode()

    # Transfer wealth represented by the decoded waveform
    transferred_amount = transfer_wealth(decoded_waveform, target_account)

    # Display the results
    print(f"Transferred Amount: ${transferred_amount:.2f}")
    print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")

    # Plot the wealth waveform
    plt.figure(figsize=(10, 5))
    plt.plot(decoded_waveform.numpy(), label='Wealth Waveform')
    plt.title("Wealth Waveform Representation")
    plt.xlabel("Time")
    plt.ylabel("Wealth Amount")
    plt.legend()
    plt.grid()
    plt.show()

except ValueError as e:
    print(e)

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define the Bank Account class
class BankAccount:
    def __init__(self, account_number, balance=0.0):
        self.account_number = account_number
        self.balance = balance

    def deposit(self, amount):
        self.balance += amount

    def get_balance(self):
        return self.balance

# Define a VPN layer for data encryption and passcode check
class VPNLayer:
    def __init__(self, encryption_key):
        self.encryption_key = encryption_key  # Simulate encryption key
        self.data_storage = {}

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (authentication)
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

    def store_data(self, data, consumer_id):
        encrypted_data = self.encrypt_data(data)
        self.data_storage[consumer_id] = encrypted_data

    def retrieve_data(self, consumer_id, passcode):
        if consumer_id in self.data_storage:
            return self.decrypt_data(self.data_storage[consumer_id], passcode)
        else:
            raise ValueError("Consumer ID not found!")

# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
    t = torch.linspace(0, 2 * np.pi, size)
    waveform = amplitude * torch.sin(frequency * t + phase)
    return waveform

# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(1, 1)  # Simple linear layer for wealth transfer

    def forward(self, x):
        return self.fc1(x)

# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
    # Ensure the waveform represents positive wealth for transfer
    wealth_amount = torch.sum(waveform[waveform > 0]).item()

    # Instantiate the wealth transfer network
    net = WealthTransferNet()

    # Create a tensor for the wealth amount
    input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Train the network (for demonstration, no real training here)
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    criterion = nn.MSELoss()

    # Dummy target for training (for simulation purpose)
    target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Simulate the transfer process
    for epoch in range(100):  # Simulating a few training epochs
        optimizer.zero_grad()
        output = net(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

    # Transfer the wealth to the target account
    target_account.deposit(wealth_amount)

    return wealth_amount

# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
    def __init__(self, waveform):
        self.waveform = waveform

    def transmit(self):
        # Simulate transmission through space (in this case, just return the waveform)
        print("Transmitting infrared signal...")
        return self.waveform

# Define a receiver to detect infrared signals
class SignalReceiver:
    def __init__(self):
        self.received_data = None

    def receive(self, signal):
        print("Receiving signal...")
        self.received_data = signal
        print("Signal received.")

    def decode(self):
        # For simplicity, return the received data directly
        return self.received_data

# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0

# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)

# Create a target bank account
target_account = BankAccount(account_number="1234567890")

# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)

# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)

try:
    retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)

    # Create an infrared signal to transmit the wealth waveform
    infrared_signal = InfraredSignal(retrieved_waveform)

    # Transmit the signal
    transmitted_signal = infrared_signal.transmit()

    # Create a receiver and receive the signal
    signal_receiver = SignalReceiver()
    signal_receiver.receive(transmitted_signal)

    # Decode the received signal
    decoded_waveform = signal_receiver.decode()

    # Transfer wealth represented by the decoded waveform
    transferred_amount = transfer_wealth(decoded_waveform, target_account)

    # Display the results
    print(f"Transferred Amount: ${transferred_amount:.2f}")
    print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")

    # Plot the wealth waveform
    plt.figure(figsize=(10, 5))
    plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
    plt.title("Wealth Waveform Representation")
    plt.xlabel("Sample Number")
    plt.ylabel("Wealth Amount")
    plt.legend()
    plt.grid()
    plt.show()

except ValueError as e:
    print(e)

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define the Bank Account class
class BankAccount:
    def __init__(self, account_number, balance=0.0):
        self.account_number = account_number
        self.balance = balance

    def deposit(self, amount):
        self.balance += amount

    def get_balance(self):
        return self.balance

# Define a VPN layer for data encryption and passcode check
class VPNLayer:
    def __init__(self, encryption_key):
        self.encryption_key = encryption_key  # Simulate encryption key
        self.data_storage = {}

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (authentication)
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

    def store_data(self, data, consumer_id):
        encrypted_data = self.encrypt_data(data)
        self.data_storage[consumer_id] = encrypted_data

    def retrieve_data(self, consumer_id, passcode):
        if consumer_id in self.data_storage:
            return self.decrypt_data(self.data_storage[consumer_id], passcode)
        else:
            raise ValueError("Consumer ID not found!")

# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
    random_amplitude = torch.rand(1).item() * 1000  # Random amplitude between 0 and 1000
    t = torch.linspace(0, 2 * np.pi, size)
    waveform = random_amplitude * torch.sin(frequency * t + phase)
    return waveform, random_amplitude

# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(1, 1)  # Simple linear layer for wealth transfer

    def forward(self, x):
        return self.fc1(x)

# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
    # Ensure the waveform represents positive wealth for transfer
    wealth_amount = torch.sum(waveform[waveform > 0]).item()

    # Instantiate the wealth transfer network
    net = WealthTransferNet()

    # Create a tensor for the wealth amount
    input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Train the network (for demonstration, no real training here)
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    criterion = nn.MSELoss()

    # Dummy target for training (for simulation purpose)
    target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Simulate the transfer process
    for epoch in range(100):  # Simulating a few training epochs
        optimizer.zero_grad()
        output = net(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

    # Transfer the wealth to the target account
    target_account.deposit(wealth_amount)

    return wealth_amount

# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
    def __init__(self, waveform):
        self.waveform = waveform

    def transmit(self):
        # Simulate transmission through space (in this case, just return the waveform)
        print("Transmitting infrared signal...")
        return self.waveform

# Define a receiver to detect infrared signals
class SignalReceiver:
    def __init__(self):
        self.received_data = None

    def receive(self, signal):
        print("Receiving signal...")
        self.received_data = signal
        print("Signal received.")

    def decode(self):
        # For simplicity, return the received data directly
        return self.received_data

# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0

# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)

# Create a target bank account
target_account = BankAccount(account_number="1234567890")

# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)

# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)

try:
    retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)

    # Create an infrared signal to transmit the wealth waveform
    infrared_signal = InfraredSignal(retrieved_waveform)

    # Transmit the signal
    transmitted_signal = infrared_signal.transmit()

    # Create a receiver and receive the signal
    signal_receiver = SignalReceiver()
    signal_receiver.receive(transmitted_signal)

    # Decode the received signal
    decoded_waveform = signal_receiver.decode()

    # Transfer wealth represented by the decoded waveform
    transferred_amount = transfer_wealth(decoded_waveform, target_account)

    # Display the results
    print(f"Transferred Amount: ${transferred_amount:.2f}")
    print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
    print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")

    # Plot the wealth waveform
    plt.figure(figsize=(10, 5))
    plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
    plt.title("Wealth Waveform Representation")
    plt.xlabel("Number")
    plt.ylabel("Amount")
    plt.legend()
    plt.grid()
    plt.show()

except ValueError as e:
    print(e)

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import hashlib

# Define the Bank Account class
class BankAccount:
    def __init__(self, account_number, balance=0.0):
        self.account_number = account_number
        self.balance = balance

    def deposit(self, amount):
        self.balance += amount

    def get_balance(self):
        return self.balance

# Define a VPN layer for data encryption and passcode check
class VPNLayer:
    def __init__(self, encryption_key):
        self.encryption_key = encryption_key  # Simulate encryption key
        self.data_storage = {}
        self.hash_storage = {}

    def encrypt_data(self, data):
        # Simulate encryption by applying a non-linear transformation
        encrypted_data = data * torch.sin(self.encryption_key)
        return encrypted_data

    def decrypt_data(self, encrypted_data, passcode):
        # Check if passcode matches the encryption key (authentication)
        if passcode == self.encryption_key:
            decrypted_data = encrypted_data / torch.sin(self.encryption_key)
            return decrypted_data
        else:
            raise ValueError("Invalid Passcode! Access Denied.")

    def store_data(self, data, consumer_id):
        encrypted_data = self.encrypt_data(data)
        # Store the encrypted data
        self.data_storage[consumer_id] = encrypted_data

        # Store a hash of the data for integrity check
        data_hash = hashlib.sha256(data.numpy()).hexdigest()
        self.hash_storage[consumer_id] = data_hash

    def retrieve_data(self, consumer_id, passcode):
        if consumer_id in self.data_storage:
            encrypted_data = self.data_storage[consumer_id]
            decrypted_data = self.decrypt_data(encrypted_data, passcode)
            # Verify data integrity
            original_hash = self.hash_storage[consumer_id]
            current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest()
            if original_hash == current_hash:
                return decrypted_data
            else:
                raise ValueError("Data integrity compromised!")
        else:
            raise ValueError("Consumer ID not found!")

# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
    random_amplitude = torch.rand(1).item() * 1000  # Random amplitude between 0 and 1000
    t = torch.linspace(0, 2 * np.pi, size)
    waveform = random_amplitude * torch.sin(frequency * t + phase)
    return waveform, random_amplitude

# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
    def __init__(self):
        super(WealthTransferNet, self).__init__()
        self.fc1 = nn.Linear(1, 1)  # Simple linear layer for wealth transfer

    def forward(self, x):
        return self.fc1(x)

# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
    # Ensure the waveform represents positive wealth for transfer
    wealth_amount = torch.sum(waveform[waveform > 0]).item()

    # Instantiate the wealth transfer network
    net = WealthTransferNet()

    # Create a tensor for the wealth amount
    input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Train the network (for demonstration, no real training here)
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    criterion = nn.MSELoss()

    # Dummy target for training (for simulation purpose)
    target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)

    # Simulate the transfer process
    for epoch in range(100):  # Simulating a few training epochs
        optimizer.zero_grad()
        output = net(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

    # Transfer the wealth to the target account
    target_account.deposit(wealth_amount)

    return wealth_amount

# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
    def __init__(self, waveform):
        self.waveform = waveform

    def transmit(self):
        # Simulate transmission through space (in this case, just return the waveform)
        print("Transmitting infrared signal...")
        return self.waveform

# Define a receiver to detect infrared signals
class SignalReceiver:
    def __init__(self):
        self.received_data = None

    def receive(self, signal):
        print("Receiving signal...")
        self.received_data = signal
        print("Signal received.")

    def decode(self):
        # For simplicity, return the received data directly
        return self.received_data

# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0

# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)

# Create a target bank account
target_account = BankAccount(account_number="1234567890")

# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))

# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)

# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)

try:
    retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)

    # Create an infrared signal to transmit the wealth waveform
    infrared_signal = InfraredSignal(retrieved_waveform)

    # Transmit the signal
    transmitted_signal = infrared_signal.transmit()

    # Create a receiver and receive the signal
    signal_receiver = SignalReceiver()
    signal_receiver.receive(transmitted_signal)

    # Decode the received signal
    decoded_waveform = signal_receiver.decode()

    # Transfer wealth represented by the decoded waveform
    transferred_amount = transfer_wealth(decoded_waveform, target_account)

    # Display the results
    print(f"Transferred Amount: ${transferred_amount:.2f}")
    print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
    print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")

    # Plot the wealth waveform
    plt.figure(figsize=(10, 5))
    plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
    plt.title("Wealth Waveform Representation")
    plt.xlabel("Sample Number")
    plt.ylabel("Wealth Amount")
    plt.legend()
    plt.grid()
    plt.show()

except ValueError as e:
    print(e)