WealthFortress / wealthfortress.py
antitheft159's picture
Update wealthfortress.py
cb009b6 verified
raw
history blame
36.3 kB
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
num_consumers = 10
interest_size = 5
wealth_size = 1
feature_size = interest_size + wealth_size
consumer_profiles = torch.rand((num_consumers, feature_size))
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
# The forward function is now correctly defined as a method of the class
def forward(self, x):
return self.fc1(x)
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5 # Number of interests
wealth_size = 1 # Each consumer has one wealth data point
feature_size = interest_size + wealth_size # Total feature size
# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))
# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
def forward(self, x):
return self.fc1(x)
# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
def __init__(self, encryption_key):
super(VPNLayer, self).__init__()
self.encryption_key = encryption_key # Simulate encryption key
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (this is our 'authentication')
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)
# Try to access the encrypted data with the correct passcode
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
print("Access Granted. Decrypted Consumer Data:")
print(decrypted_profiles)
except ValueError as e:
print(e)
# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
print(e)
# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5 # Number of interests
wealth_size = 1 # Each consumer has one wealth data point
feature_size = interest_size + wealth_size # Total feature size
# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))
# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
def forward(self, x):
return self.fc1(x)
# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
def __init__(self, encryption_key):
super(VPNLayer, self).__init__()
self.encryption_key = encryption_key # Simulate encryption key
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (this is our 'authentication')
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)
# Try to access the encrypted data with the correct passcode
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
print("Access Granted. Decrypted Consumer Data:")
print(decrypted_profiles)
except ValueError as e:
print(e)
# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
print(e)
# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("FortuneArch")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import time
import numpy as np
# Define the number of mobile receivers
num_receivers = 5
# Define the size of the data packets
data_packet_size = 256
# Simulate high-speed data transmission by creating data packets
def generate_data_packet(size):
return torch.rand(size)
# Simulate a mobile receiver processing the data
class MobileReceiver(nn.Module):
def __init__(self):
super(MobileReceiver, self).__init__()
self.fc1 = nn.Linear(data_packet_size, data_packet_size)
def forward(self, data):
processed_data = torch.relu(self.fc1(data))
return processed_data
# Instantiate the mobile receivers
receivers = [MobileReceiver() for _ in range(num_receivers)]
# Define a function to simulate instantaneous transmission to all receivers
def transmit_data_to_receivers(data_packet, receivers):
received_data = []
# Start timing to simulate high-speed transmission
start_time = time.time()
# Transmit the data packet to each receiver
for receiver in receivers:
received_packet = receiver(data_packet)
received_data.append(received_packet)
# End timing
end_time = time.time()
transmission_time = end_time - start_time
print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds")
return received_data
# Generate a random data packet
data_packet = generate_data_packet(data_packet_size)
# Simulate data transmission to the receivers
received_data = transmit_data_to_receivers(data_packet, receivers)
# Display results
print(f"Original Data Packet (Sample):\n {data_packet[:5]}")
print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}")
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
t = torch.linspace(0, 2 * np.pi, size)
waveform = amplitude * torch.sin(frequency * t + phase)
return waveform
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0
# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform')
plt.title("Wealth Waveform Representation")
plt.xlabel("Time")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
t = torch.linspace(0, 2 * np.pi, size)
waveform = amplitude * torch.sin(frequency * t + phase)
return waveform
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0
# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Sample Number")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
t = torch.linspace(0, 2 * np.pi, size)
waveform = random_amplitude * torch.sin(frequency * t + phase)
return waveform, random_amplitude
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0
# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Number")
plt.ylabel("Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import hashlib
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
self.hash_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
# Store the encrypted data
self.data_storage[consumer_id] = encrypted_data
# Store a hash of the data for integrity check
data_hash = hashlib.sha256(data.numpy()).hexdigest()
self.hash_storage[consumer_id] = data_hash
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
encrypted_data = self.data_storage[consumer_id]
decrypted_data = self.decrypt_data(encrypted_data, passcode)
# Verify data integrity
original_hash = self.hash_storage[consumer_id]
current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest()
if original_hash == current_hash:
return decrypted_data
else:
raise ValueError("Data integrity compromised!")
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
t = torch.linspace(0, 2 * np.pi, size)
waveform = random_amplitude * torch.sin(frequency * t + phase)
return waveform, random_amplitude
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0
# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Sample Number")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)