import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from sklearn.metrics.pairwise import cosine_similarity num_consumers = 10 interest_size = 5 wealth_size = 1 feature_size = interest_size + wealth_size consumer_profiles = torch.rand((num_consumers, feature_size)) interests = consumer_profiles[:, :interest_size] wealth_data = consumer_profiles[:, interest_size:] class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(wealth_size, wealth_size) # The forward function is now correctly defined as a method of the class def forward(self, x): return self.fc1(x) net = WealthTransferNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Calculate cosine similarity between consumer interests similarity_matrix = cosine_similarity(interests) # Find pairs of consumers with similarity above a certain threshold threshold = 0.8 similar_pairs = np.argwhere(similarity_matrix > threshold) # We will only consider upper triangular values to avoid double matching or self-matching similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] # Simulate wealth transfer between matched pairs for pair in similar_pairs: consumer_a, consumer_b = pair # Get wealth data for the pair wealth_a = wealth_data[consumer_a] wealth_b = wealth_data[consumer_b] # Train the network to transfer wealth between matched consumers for epoch in range(100): optimizer.zero_grad() transferred_wealth_a = net(wealth_a) transferred_wealth_b = net(wealth_b) # Simulate bidirectional transfer: A to B and B to A loss_a_to_b = criterion(transferred_wealth_a, wealth_b) loss_b_to_a = criterion(transferred_wealth_b, wealth_a) total_loss = loss_a_to_b + loss_b_to_a total_loss.backward() optimizer.step() # Display the similarity matrix and transfer results print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) # Plotting the interest similarity matrix for visualization plt.figure(figsize=(8, 6)) plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') plt.colorbar(label='Cosine Similarity') plt.title("Interest Similarity Matrix") plt.show() import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from sklearn.metrics.pairwise import cosine_similarity # Define the number of consumers and feature size (interests + wealth) num_consumers = 10 interest_size = 5 # Number of interests wealth_size = 1 # Each consumer has one wealth data point feature_size = interest_size + wealth_size # Total feature size # Generate random consumer profiles (interest + wealth) consumer_profiles = torch.rand((num_consumers, feature_size)) # Split into interests and wealth data interests = consumer_profiles[:, :interest_size] wealth_data = consumer_profiles[:, interest_size:] # Define a neural network to transfer wealth between consumers class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(wealth_size, wealth_size) def forward(self, x): return self.fc1(x) # Define a VPN-like layer for data encryption and passcode check class VPNLayer(nn.Module): def __init__(self, encryption_key): super(VPNLayer, self).__init__() self.encryption_key = encryption_key # Simulate encryption key def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (this is our 'authentication') if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") # Instantiate the VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Encrypt consumer profiles (interest + wealth data) using the VPN layer encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles) # Passcode required to access data (for simplicity, using the same as the encryption key) passcode = torch.tensor(0.5) # Try to access the encrypted data with the correct passcode try: decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode) print("Access Granted. Decrypted Consumer Data:") print(decrypted_profiles) except ValueError as e: print(e) # Simulate incorrect passcode wrong_passcode = torch.tensor(0.3) try: decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode) except ValueError as e: print(e) # Instantiate the wealth transfer network net = WealthTransferNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Calculate cosine similarity between consumer interests similarity_matrix = cosine_similarity(interests) # Find pairs of consumers with similarity above a certain threshold threshold = 0.8 similar_pairs = np.argwhere(similarity_matrix > threshold) # We will only consider upper triangular values to avoid double matching or self-matching similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] # Simulate wealth transfer between matched pairs for pair in similar_pairs: consumer_a, consumer_b = pair # Get wealth data for the pair wealth_a = wealth_data[consumer_a] wealth_b = wealth_data[consumer_b] # Train the network to transfer wealth between matched consumers for epoch in range(100): optimizer.zero_grad() transferred_wealth_a = net(wealth_a) transferred_wealth_b = net(wealth_b) # Simulate bidirectional transfer: A to B and B to A loss_a_to_b = criterion(transferred_wealth_a, wealth_b) loss_b_to_a = criterion(transferred_wealth_b, wealth_a) total_loss = loss_a_to_b + loss_b_to_a total_loss.backward() optimizer.step() # Display the similarity matrix and transfer results print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) # Plotting the interest similarity matrix for visualization plt.figure(figsize=(8, 6)) plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') plt.colorbar(label='Cosine Similarity') plt.title("Interest Similarity Matrix") plt.show() import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from sklearn.metrics.pairwise import cosine_similarity # Define the number of consumers and feature size (interests + wealth) num_consumers = 10 interest_size = 5 # Number of interests wealth_size = 1 # Each consumer has one wealth data point feature_size = interest_size + wealth_size # Total feature size # Generate random consumer profiles (interest + wealth) consumer_profiles = torch.rand((num_consumers, feature_size)) # Split into interests and wealth data interests = consumer_profiles[:, :interest_size] wealth_data = consumer_profiles[:, interest_size:] # Define a neural network to transfer wealth between consumers class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(wealth_size, wealth_size) def forward(self, x): return self.fc1(x) # Define a VPN-like layer for data encryption and passcode check class VPNLayer(nn.Module): def __init__(self, encryption_key): super(VPNLayer, self).__init__() self.encryption_key = encryption_key # Simulate encryption key def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (this is our 'authentication') if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") # Instantiate the VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Encrypt consumer profiles (interest + wealth data) using the VPN layer encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles) # Passcode required to access data (for simplicity, using the same as the encryption key) passcode = torch.tensor(0.5) # Try to access the encrypted data with the correct passcode try: decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode) print("Access Granted. Decrypted Consumer Data:") print(decrypted_profiles) except ValueError as e: print(e) # Simulate incorrect passcode wrong_passcode = torch.tensor(0.3) try: decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode) except ValueError as e: print(e) # Instantiate the wealth transfer network net = WealthTransferNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Calculate cosine similarity between consumer interests similarity_matrix = cosine_similarity(interests) # Find pairs of consumers with similarity above a certain threshold threshold = 0.8 similar_pairs = np.argwhere(similarity_matrix > threshold) # We will only consider upper triangular values to avoid double matching or self-matching similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] # Simulate wealth transfer between matched pairs for pair in similar_pairs: consumer_a, consumer_b = pair # Get wealth data for the pair wealth_a = wealth_data[consumer_a] wealth_b = wealth_data[consumer_b] # Train the network to transfer wealth between matched consumers for epoch in range(100): optimizer.zero_grad() transferred_wealth_a = net(wealth_a) transferred_wealth_b = net(wealth_b) # Simulate bidirectional transfer: A to B and B to A loss_a_to_b = criterion(transferred_wealth_a, wealth_b) loss_b_to_a = criterion(transferred_wealth_b, wealth_a) total_loss = loss_a_to_b + loss_b_to_a total_loss.backward() optimizer.step() # Display the similarity matrix and transfer results print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) # Plotting the interest similarity matrix for visualization plt.figure(figsize=(8, 6)) plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') plt.colorbar(label='Cosine Similarity') plt.title("FortuneArch") plt.show() import torch import torch.nn as nn import torch.optim as optim import time import numpy as np # Define the number of mobile receivers num_receivers = 5 # Define the size of the data packets data_packet_size = 256 # Simulate high-speed data transmission by creating data packets def generate_data_packet(size): return torch.rand(size) # Simulate a mobile receiver processing the data class MobileReceiver(nn.Module): def __init__(self): super(MobileReceiver, self).__init__() self.fc1 = nn.Linear(data_packet_size, data_packet_size) def forward(self, data): processed_data = torch.relu(self.fc1(data)) return processed_data # Instantiate the mobile receivers receivers = [MobileReceiver() for _ in range(num_receivers)] # Define a function to simulate instantaneous transmission to all receivers def transmit_data_to_receivers(data_packet, receivers): received_data = [] # Start timing to simulate high-speed transmission start_time = time.time() # Transmit the data packet to each receiver for receiver in receivers: received_packet = receiver(data_packet) received_data.append(received_packet) # End timing end_time = time.time() transmission_time = end_time - start_time print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds") return received_data # Generate a random data packet data_packet = generate_data_packet(data_packet_size) # Simulate data transmission to the receivers received_data = transmit_data_to_receivers(data_packet, receivers) # Display results print(f"Original Data Packet (Sample):\n {data_packet[:5]}") print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}") import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define the Bank Account class class BankAccount: def __init__(self, account_number, balance=0.0): self.account_number = account_number self.balance = balance def deposit(self, amount): self.balance += amount def get_balance(self): return self.balance # Define a VPN layer for data encryption and passcode check class VPNLayer: def __init__(self, encryption_key): self.encryption_key = encryption_key # Simulate encryption key self.data_storage = {} def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (authentication) if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") def store_data(self, data, consumer_id): encrypted_data = self.encrypt_data(data) self.data_storage[consumer_id] = encrypted_data def retrieve_data(self, consumer_id, passcode): if consumer_id in self.data_storage: return self.decrypt_data(self.data_storage[consumer_id], passcode) else: raise ValueError("Consumer ID not found!") # Generate a wealth waveform def generate_wealth_waveform(size, amplitude, frequency, phase): t = torch.linspace(0, 2 * np.pi, size) waveform = amplitude * torch.sin(frequency * t + phase) return waveform # Define the WealthTransferNet neural network class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer def forward(self, x): return self.fc1(x) # Function to simulate the wealth transfer process def transfer_wealth(waveform, target_account): # Ensure the waveform represents positive wealth for transfer wealth_amount = torch.sum(waveform[waveform > 0]).item() # Instantiate the wealth transfer network net = WealthTransferNet() # Create a tensor for the wealth amount input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Train the network (for demonstration, no real training here) optimizer = optim.SGD(net.parameters(), lr=0.01) criterion = nn.MSELoss() # Dummy target for training (for simulation purpose) target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Simulate the transfer process for epoch in range(100): # Simulating a few training epochs optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Transfer the wealth to the target account target_account.deposit(wealth_amount) return wealth_amount # Define the InfraredSignal class to simulate signal transmission class InfraredSignal: def __init__(self, waveform): self.waveform = waveform def transmit(self): # Simulate transmission through space (in this case, just return the waveform) print("Transmitting infrared signal...") return self.waveform # Define a receiver to detect infrared signals class SignalReceiver: def __init__(self): self.received_data = None def receive(self, signal): print("Receiving signal...") self.received_data = signal print("Signal received.") def decode(self): # For simplicity, return the received data directly return self.received_data # Parameters for the wealth waveform waveform_size = 1000 amplitude = 1000.0 frequency = 2.0 phase = 0.0 # Generate a wealth waveform wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase) # Create a target bank account target_account = BankAccount(account_number="1234567890") # Create a VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Store consumer data (e.g., wealth waveform) in the VPN layer consumer_id = "consumer_001" vpn_layer.store_data(wealth_waveform, consumer_id) # Attempt to retrieve data with the correct passcode passcode = torch.tensor(0.5) try: retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) # Create an infrared signal to transmit the wealth waveform infrared_signal = InfraredSignal(retrieved_waveform) # Transmit the signal transmitted_signal = infrared_signal.transmit() # Create a receiver and receive the signal signal_receiver = SignalReceiver() signal_receiver.receive(transmitted_signal) # Decode the received signal decoded_waveform = signal_receiver.decode() # Transfer wealth represented by the decoded waveform transferred_amount = transfer_wealth(decoded_waveform, target_account) # Display the results print(f"Transferred Amount: ${transferred_amount:.2f}") print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") # Plot the wealth waveform plt.figure(figsize=(10, 5)) plt.plot(decoded_waveform.numpy(), label='Wealth Waveform') plt.title("Wealth Waveform Representation") plt.xlabel("Time") plt.ylabel("Wealth Amount") plt.legend() plt.grid() plt.show() except ValueError as e: print(e) import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define the Bank Account class class BankAccount: def __init__(self, account_number, balance=0.0): self.account_number = account_number self.balance = balance def deposit(self, amount): self.balance += amount def get_balance(self): return self.balance # Define a VPN layer for data encryption and passcode check class VPNLayer: def __init__(self, encryption_key): self.encryption_key = encryption_key # Simulate encryption key self.data_storage = {} def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (authentication) if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") def store_data(self, data, consumer_id): encrypted_data = self.encrypt_data(data) self.data_storage[consumer_id] = encrypted_data def retrieve_data(self, consumer_id, passcode): if consumer_id in self.data_storage: return self.decrypt_data(self.data_storage[consumer_id], passcode) else: raise ValueError("Consumer ID not found!") # Generate a wealth waveform def generate_wealth_waveform(size, amplitude, frequency, phase): t = torch.linspace(0, 2 * np.pi, size) waveform = amplitude * torch.sin(frequency * t + phase) return waveform # Define the WealthTransferNet neural network class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer def forward(self, x): return self.fc1(x) # Function to simulate the wealth transfer process def transfer_wealth(waveform, target_account): # Ensure the waveform represents positive wealth for transfer wealth_amount = torch.sum(waveform[waveform > 0]).item() # Instantiate the wealth transfer network net = WealthTransferNet() # Create a tensor for the wealth amount input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Train the network (for demonstration, no real training here) optimizer = optim.SGD(net.parameters(), lr=0.01) criterion = nn.MSELoss() # Dummy target for training (for simulation purpose) target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Simulate the transfer process for epoch in range(100): # Simulating a few training epochs optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Transfer the wealth to the target account target_account.deposit(wealth_amount) return wealth_amount # Define the InfraredSignal class to simulate signal transmission class InfraredSignal: def __init__(self, waveform): self.waveform = waveform def transmit(self): # Simulate transmission through space (in this case, just return the waveform) print("Transmitting infrared signal...") return self.waveform # Define a receiver to detect infrared signals class SignalReceiver: def __init__(self): self.received_data = None def receive(self, signal): print("Receiving signal...") self.received_data = signal print("Signal received.") def decode(self): # For simplicity, return the received data directly return self.received_data # Parameters for the wealth waveform waveform_size = 1000 amplitude = 1000.0 frequency = 2.0 phase = 0.0 # Generate a wealth waveform wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase) # Create a target bank account target_account = BankAccount(account_number="1234567890") # Create a VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Store consumer data (e.g., wealth waveform) in the VPN layer consumer_id = "consumer_001" vpn_layer.store_data(wealth_waveform, consumer_id) # Attempt to retrieve data with the correct passcode passcode = torch.tensor(0.5) try: retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) # Create an infrared signal to transmit the wealth waveform infrared_signal = InfraredSignal(retrieved_waveform) # Transmit the signal transmitted_signal = infrared_signal.transmit() # Create a receiver and receive the signal signal_receiver = SignalReceiver() signal_receiver.receive(transmitted_signal) # Decode the received signal decoded_waveform = signal_receiver.decode() # Transfer wealth represented by the decoded waveform transferred_amount = transfer_wealth(decoded_waveform, target_account) # Display the results print(f"Transferred Amount: ${transferred_amount:.2f}") print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") # Plot the wealth waveform plt.figure(figsize=(10, 5)) plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') plt.title("Wealth Waveform Representation") plt.xlabel("Sample Number") plt.ylabel("Wealth Amount") plt.legend() plt.grid() plt.show() except ValueError as e: print(e) import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define the Bank Account class class BankAccount: def __init__(self, account_number, balance=0.0): self.account_number = account_number self.balance = balance def deposit(self, amount): self.balance += amount def get_balance(self): return self.balance # Define a VPN layer for data encryption and passcode check class VPNLayer: def __init__(self, encryption_key): self.encryption_key = encryption_key # Simulate encryption key self.data_storage = {} def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (authentication) if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") def store_data(self, data, consumer_id): encrypted_data = self.encrypt_data(data) self.data_storage[consumer_id] = encrypted_data def retrieve_data(self, consumer_id, passcode): if consumer_id in self.data_storage: return self.decrypt_data(self.data_storage[consumer_id], passcode) else: raise ValueError("Consumer ID not found!") # Generate a wealth waveform with a random amplitude def generate_wealth_waveform(size, frequency, phase): random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000 t = torch.linspace(0, 2 * np.pi, size) waveform = random_amplitude * torch.sin(frequency * t + phase) return waveform, random_amplitude # Define the WealthTransferNet neural network class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer def forward(self, x): return self.fc1(x) # Function to simulate the wealth transfer process def transfer_wealth(waveform, target_account): # Ensure the waveform represents positive wealth for transfer wealth_amount = torch.sum(waveform[waveform > 0]).item() # Instantiate the wealth transfer network net = WealthTransferNet() # Create a tensor for the wealth amount input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Train the network (for demonstration, no real training here) optimizer = optim.SGD(net.parameters(), lr=0.01) criterion = nn.MSELoss() # Dummy target for training (for simulation purpose) target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Simulate the transfer process for epoch in range(100): # Simulating a few training epochs optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Transfer the wealth to the target account target_account.deposit(wealth_amount) return wealth_amount # Define the InfraredSignal class to simulate signal transmission class InfraredSignal: def __init__(self, waveform): self.waveform = waveform def transmit(self): # Simulate transmission through space (in this case, just return the waveform) print("Transmitting infrared signal...") return self.waveform # Define a receiver to detect infrared signals class SignalReceiver: def __init__(self): self.received_data = None def receive(self, signal): print("Receiving signal...") self.received_data = signal print("Signal received.") def decode(self): # For simplicity, return the received data directly return self.received_data # Parameters for the wealth waveform waveform_size = 1000 frequency = 2.0 phase = 0.0 # Generate a wealth waveform with random amplitude wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase) # Create a target bank account target_account = BankAccount(account_number="1234567890") # Create a VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Store consumer data (e.g., wealth waveform) in the VPN layer consumer_id = "consumer_001" vpn_layer.store_data(wealth_waveform, consumer_id) # Attempt to retrieve data with the correct passcode passcode = torch.tensor(0.5) try: retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) # Create an infrared signal to transmit the wealth waveform infrared_signal = InfraredSignal(retrieved_waveform) # Transmit the signal transmitted_signal = infrared_signal.transmit() # Create a receiver and receive the signal signal_receiver = SignalReceiver() signal_receiver.receive(transmitted_signal) # Decode the received signal decoded_waveform = signal_receiver.decode() # Transfer wealth represented by the decoded waveform transferred_amount = transfer_wealth(decoded_waveform, target_account) # Display the results print(f"Transferred Amount: ${transferred_amount:.2f}") print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") print(f"Randomized Amplitude: ${randomized_amplitude:.2f}") # Plot the wealth waveform plt.figure(figsize=(10, 5)) plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') plt.title("Wealth Waveform Representation") plt.xlabel("Number") plt.ylabel("Amount") plt.legend() plt.grid() plt.show() except ValueError as e: print(e) import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import hashlib # Define the Bank Account class class BankAccount: def __init__(self, account_number, balance=0.0): self.account_number = account_number self.balance = balance def deposit(self, amount): self.balance += amount def get_balance(self): return self.balance # Define a VPN layer for data encryption and passcode check class VPNLayer: def __init__(self, encryption_key): self.encryption_key = encryption_key # Simulate encryption key self.data_storage = {} self.hash_storage = {} def encrypt_data(self, data): # Simulate encryption by applying a non-linear transformation encrypted_data = data * torch.sin(self.encryption_key) return encrypted_data def decrypt_data(self, encrypted_data, passcode): # Check if passcode matches the encryption key (authentication) if passcode == self.encryption_key: decrypted_data = encrypted_data / torch.sin(self.encryption_key) return decrypted_data else: raise ValueError("Invalid Passcode! Access Denied.") def store_data(self, data, consumer_id): encrypted_data = self.encrypt_data(data) # Store the encrypted data self.data_storage[consumer_id] = encrypted_data # Store a hash of the data for integrity check data_hash = hashlib.sha256(data.numpy()).hexdigest() self.hash_storage[consumer_id] = data_hash def retrieve_data(self, consumer_id, passcode): if consumer_id in self.data_storage: encrypted_data = self.data_storage[consumer_id] decrypted_data = self.decrypt_data(encrypted_data, passcode) # Verify data integrity original_hash = self.hash_storage[consumer_id] current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest() if original_hash == current_hash: return decrypted_data else: raise ValueError("Data integrity compromised!") else: raise ValueError("Consumer ID not found!") # Generate a wealth waveform with a random amplitude def generate_wealth_waveform(size, frequency, phase): random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000 t = torch.linspace(0, 2 * np.pi, size) waveform = random_amplitude * torch.sin(frequency * t + phase) return waveform, random_amplitude # Define the WealthTransferNet neural network class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer def forward(self, x): return self.fc1(x) # Function to simulate the wealth transfer process def transfer_wealth(waveform, target_account): # Ensure the waveform represents positive wealth for transfer wealth_amount = torch.sum(waveform[waveform > 0]).item() # Instantiate the wealth transfer network net = WealthTransferNet() # Create a tensor for the wealth amount input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Train the network (for demonstration, no real training here) optimizer = optim.SGD(net.parameters(), lr=0.01) criterion = nn.MSELoss() # Dummy target for training (for simulation purpose) target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) # Simulate the transfer process for epoch in range(100): # Simulating a few training epochs optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Transfer the wealth to the target account target_account.deposit(wealth_amount) return wealth_amount # Define the InfraredSignal class to simulate signal transmission class InfraredSignal: def __init__(self, waveform): self.waveform = waveform def transmit(self): # Simulate transmission through space (in this case, just return the waveform) print("Transmitting infrared signal...") return self.waveform # Define a receiver to detect infrared signals class SignalReceiver: def __init__(self): self.received_data = None def receive(self, signal): print("Receiving signal...") self.received_data = signal print("Signal received.") def decode(self): # For simplicity, return the received data directly return self.received_data # Parameters for the wealth waveform waveform_size = 1000 frequency = 2.0 phase = 0.0 # Generate a wealth waveform with random amplitude wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase) # Create a target bank account target_account = BankAccount(account_number="1234567890") # Create a VPN layer vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) # Store consumer data (e.g., wealth waveform) in the VPN layer consumer_id = "consumer_001" vpn_layer.store_data(wealth_waveform, consumer_id) # Attempt to retrieve data with the correct passcode passcode = torch.tensor(0.5) try: retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) # Create an infrared signal to transmit the wealth waveform infrared_signal = InfraredSignal(retrieved_waveform) # Transmit the signal transmitted_signal = infrared_signal.transmit() # Create a receiver and receive the signal signal_receiver = SignalReceiver() signal_receiver.receive(transmitted_signal) # Decode the received signal decoded_waveform = signal_receiver.decode() # Transfer wealth represented by the decoded waveform transferred_amount = transfer_wealth(decoded_waveform, target_account) # Display the results print(f"Transferred Amount: ${transferred_amount:.2f}") print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") print(f"Randomized Amplitude: ${randomized_amplitude:.2f}") # Plot the wealth waveform plt.figure(figsize=(10, 5)) plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') plt.title("Wealth Waveform Representation") plt.xlabel("Sample Number") plt.ylabel("Wealth Amount") plt.legend() plt.grid() plt.show() except ValueError as e: print(e)