Upload wealthwavetransfer.py
Browse files- wealthwavetransfer.py +273 -0
wealthwavetransfer.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""WealthWaveTransfer
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1XkEAYjoh8WGeoRnmdkgiNTM-IwU4PC__
|
8 |
+
"""
|
9 |
+
|
10 |
+
pip install torch torchvision
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# Generate synthetic data
|
16 |
+
np.random.seed(42)
|
17 |
+
num_samples = 1000
|
18 |
+
|
19 |
+
# Features: Age, Income, Investments
|
20 |
+
age = np.random.randint(18, 70, size=num_samples)
|
21 |
+
income = np.random.normal(50000, 15000, size=num_samples) # Average income
|
22 |
+
investments = np.random.normal(10000, 5000, size=num_samples) # Average investments
|
23 |
+
|
24 |
+
# Wealth target: a simple function of the features (you can modify this)
|
25 |
+
wealth = 0.4 * age + 0.5 * (income / 1000) + 0.3 * (investments / 1000) + np.random.normal(0, 5, size=num_samples)
|
26 |
+
|
27 |
+
# Convert to PyTorch tensors
|
28 |
+
X = torch.tensor(np.column_stack((age, income, investments)), dtype=torch.float32)
|
29 |
+
y = torch.tensor(wealth, dtype=torch.float32).view(-1, 1)
|
30 |
+
|
31 |
+
import torch.nn as nn
|
32 |
+
import torch.optim as optim
|
33 |
+
|
34 |
+
class WealthModel(nn.Module):
|
35 |
+
def __init__(self):
|
36 |
+
super(WealthModel, self).__init__()
|
37 |
+
self.fc1 = nn.Linear(3, 64) # 3 input features
|
38 |
+
self.fc2 = nn.Linear(64, 32)
|
39 |
+
self.fc3 = nn.Linear(32, 1) # Output is a single value (wealth)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
x = torch.relu(self.fc1(x))
|
43 |
+
x = torch.relu(self.fc2(x))
|
44 |
+
x = self.fc3(x) # No activation function on output layer for regression
|
45 |
+
return x
|
46 |
+
|
47 |
+
model = WealthModel()
|
48 |
+
|
49 |
+
# Training settings
|
50 |
+
criterion = nn.MSELoss()
|
51 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
52 |
+
num_epochs = 100
|
53 |
+
|
54 |
+
# Training loop
|
55 |
+
for epoch in range(num_epochs):
|
56 |
+
model.train()
|
57 |
+
|
58 |
+
# Forward pass
|
59 |
+
outputs = model(X)
|
60 |
+
loss = criterion(outputs, y)
|
61 |
+
|
62 |
+
# Backward pass and optimization
|
63 |
+
optimizer.zero_grad()
|
64 |
+
loss.backward()
|
65 |
+
optimizer.step()
|
66 |
+
|
67 |
+
if (epoch+1) % 10 == 0:
|
68 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
|
69 |
+
|
70 |
+
model.eval()
|
71 |
+
with torch.no_grad():
|
72 |
+
predicted = model(X)
|
73 |
+
|
74 |
+
# Optionally, you can visualize or calculate performance metrics
|
75 |
+
import matplotlib.pyplot as plt
|
76 |
+
|
77 |
+
plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5)
|
78 |
+
plt.xlabel('True Wealth')
|
79 |
+
plt.ylabel('Predicted Wealth')
|
80 |
+
plt.title('True vs Predicted Wealth')
|
81 |
+
plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red')
|
82 |
+
plt.show()
|
83 |
+
|
84 |
+
class ObfuscationLayer(nn.Module):
|
85 |
+
def __init__(self):
|
86 |
+
super(ObfuscationLayer, self).__init__()
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
# Add noise to simulate obfuscation/encryption
|
90 |
+
noise = torch.normal(0, 0.1, x.size()).to(x.device) # Adjust the standard deviation for noise level
|
91 |
+
return x + noise
|
92 |
+
|
93 |
+
class EnhancedWealthModel(nn.Module):
|
94 |
+
def __init__(self):
|
95 |
+
super(EnhancedWealthModel, self).__init__()
|
96 |
+
self.obfuscation = ObfuscationLayer()
|
97 |
+
self.fc1 = nn.Linear(3, 128) # More units for complexity
|
98 |
+
self.fc2 = nn.Linear(128, 64)
|
99 |
+
self.fc3 = nn.Linear(64, 32)
|
100 |
+
self.fc4 = nn.Linear(32, 1) # Output is a single value (wealth)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
x = self.obfuscation(x) # Apply obfuscation
|
104 |
+
x = torch.relu(self.fc1(x))
|
105 |
+
x = torch.relu(self.fc2(x))
|
106 |
+
x = torch.relu(self.fc3(x))
|
107 |
+
x = self.fc4(x) # No activation function on output layer for regression
|
108 |
+
return x
|
109 |
+
|
110 |
+
model = EnhancedWealthModel()
|
111 |
+
|
112 |
+
# Training settings
|
113 |
+
criterion = nn.MSELoss()
|
114 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
115 |
+
num_epochs = 100
|
116 |
+
|
117 |
+
# Training loop
|
118 |
+
for epoch in range(num_epochs):
|
119 |
+
model.train()
|
120 |
+
|
121 |
+
# Forward pass
|
122 |
+
outputs = model(X)
|
123 |
+
loss = criterion(outputs, y)
|
124 |
+
|
125 |
+
# Backward pass and optimization
|
126 |
+
optimizer.zero_grad()
|
127 |
+
loss.backward()
|
128 |
+
optimizer.step()
|
129 |
+
|
130 |
+
if (epoch + 1) % 10 == 0:
|
131 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
132 |
+
|
133 |
+
model.eval()
|
134 |
+
with torch.no_grad():
|
135 |
+
predicted = model(X)
|
136 |
+
|
137 |
+
# Visualizing True vs. Predicted Wealth
|
138 |
+
plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5)
|
139 |
+
plt.xlabel('True Wealth')
|
140 |
+
plt.ylabel('Predicted Wealth')
|
141 |
+
plt.title('True vs Predicted Wealth with Obfuscation Layer')
|
142 |
+
plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red')
|
143 |
+
plt.show()
|
144 |
+
|
145 |
+
import torch
|
146 |
+
import torch.nn as nn
|
147 |
+
import torch.optim as optim
|
148 |
+
import matplotlib.pyplot as plt
|
149 |
+
import numpy as np
|
150 |
+
|
151 |
+
# Define grid size
|
152 |
+
grid_size = 20
|
153 |
+
|
154 |
+
# Generate a sine waveform to represent wealth data
|
155 |
+
def generate_wealth_waveform(grid_size):
|
156 |
+
x = np.linspace(0, 2 * np.pi, grid_size)
|
157 |
+
wealth_waveform = np.sin(x)
|
158 |
+
return wealth_waveform
|
159 |
+
|
160 |
+
# Create wealth data for the grid
|
161 |
+
wealth_waveform = generate_wealth_waveform(grid_size)
|
162 |
+
wealth_data = np.tile(wealth_waveform, (grid_size, 1)) # Repeat waveform along one axis
|
163 |
+
|
164 |
+
# Convert wealth data to PyTorch tensor
|
165 |
+
wealth_data = torch.tensor(wealth_data, dtype=torch.float32)
|
166 |
+
|
167 |
+
# Define a simple neural network to "transfer" wealth data to a targeted account
|
168 |
+
class WealthTransferNet(nn.Module):
|
169 |
+
def __init__(self):
|
170 |
+
super(WealthTransferNet, self).__init__()
|
171 |
+
self.fc1 = nn.Linear(grid_size * grid_size, 128)
|
172 |
+
self.fc2 = nn.Linear(128, grid_size * grid_size)
|
173 |
+
|
174 |
+
def forward(self, x):
|
175 |
+
x = torch.relu(self.fc1(x))
|
176 |
+
x = self.fc2(x)
|
177 |
+
return x
|
178 |
+
|
179 |
+
# Instantiate the network, loss function, and optimizer
|
180 |
+
net = WealthTransferNet()
|
181 |
+
criterion = nn.MSELoss()
|
182 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
183 |
+
|
184 |
+
# Target account: Wealth directed to bottom-right corner of the grid
|
185 |
+
target_account = torch.zeros((grid_size, grid_size))
|
186 |
+
target_account[-5:, -5:] = 1 # Simulating the transfer to a targeted account
|
187 |
+
|
188 |
+
# Convert the grid to a single vector for the neural network
|
189 |
+
input_data = wealth_data.view(-1)
|
190 |
+
target_data = target_account.view(-1)
|
191 |
+
|
192 |
+
# Training the network
|
193 |
+
epochs = 500
|
194 |
+
for epoch in range(epochs):
|
195 |
+
optimizer.zero_grad()
|
196 |
+
output = net(input_data)
|
197 |
+
loss = criterion(output, target_data)
|
198 |
+
loss.backward()
|
199 |
+
optimizer.step()
|
200 |
+
|
201 |
+
# Reshape the output to the grid size
|
202 |
+
output_grid = output.detach().view(grid_size, grid_size)
|
203 |
+
|
204 |
+
# Plot the original wealth waveform and transferred wealth
|
205 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
206 |
+
axes[0].imshow(wealth_data, cmap='viridis')
|
207 |
+
axes[0].set_title('Original Wealth Waveform')
|
208 |
+
axes[1].imshow(target_account, cmap='viridis')
|
209 |
+
axes[1].set_title('Target Account Location')
|
210 |
+
axes[2].imshow(output_grid, cmap='viridis')
|
211 |
+
axes[2].set_title('Transferred Wealth to Target')
|
212 |
+
plt.show()
|
213 |
+
|
214 |
+
import torch
|
215 |
+
import torch.nn as nn
|
216 |
+
import torch.optim as optim
|
217 |
+
import matplotlib.pyplot as plt
|
218 |
+
import numpy as np
|
219 |
+
|
220 |
+
# Define the size of the waveform
|
221 |
+
waveform_size = 100
|
222 |
+
|
223 |
+
# Generate a sine waveform to represent wealth data
|
224 |
+
def generate_wealth_waveform(waveform_size):
|
225 |
+
x = np.linspace(0, 2 * np.pi, waveform_size)
|
226 |
+
wealth_waveform = np.sin(x)
|
227 |
+
return wealth_waveform
|
228 |
+
|
229 |
+
# Create wealth data as a single waveform
|
230 |
+
wealth_waveform = generate_wealth_waveform(waveform_size)
|
231 |
+
wealth_data = torch.tensor(wealth_waveform, dtype=torch.float32)
|
232 |
+
|
233 |
+
# Define a neural network to transfer wealth data to a targeted point in the waveform
|
234 |
+
class WealthTransferNet(nn.Module):
|
235 |
+
def __init__(self):
|
236 |
+
super(WealthTransferNet, self).__init__()
|
237 |
+
self.fc1 = nn.Linear(waveform_size, 64)
|
238 |
+
self.fc2 = nn.Linear(64, waveform_size)
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
x = torch.relu(self.fc1(x))
|
242 |
+
x = self.fc2(x)
|
243 |
+
return x
|
244 |
+
|
245 |
+
# Instantiate the network, loss function, and optimizer
|
246 |
+
net = WealthTransferNet()
|
247 |
+
criterion = nn.MSELoss()
|
248 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
249 |
+
|
250 |
+
# Target account: Wealth directed to the end of the waveform (right side)
|
251 |
+
target_account = torch.zeros(waveform_size)
|
252 |
+
target_account[-10:] = 1 # Simulating the transfer to the last 10 positions
|
253 |
+
|
254 |
+
# Training the network
|
255 |
+
epochs = 1000
|
256 |
+
for epoch in range(epochs):
|
257 |
+
optimizer.zero_grad()
|
258 |
+
output = net(wealth_data)
|
259 |
+
loss = criterion(output, target_account)
|
260 |
+
loss.backward()
|
261 |
+
optimizer.step()
|
262 |
+
|
263 |
+
# Convert output to numpy for plotting
|
264 |
+
output_waveform = output.detach().numpy()
|
265 |
+
|
266 |
+
# Plot the original and transferred wealth waveform
|
267 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
268 |
+
ax.plot(wealth_data.numpy(), label="Original Wealth Waveform", linestyle="--")
|
269 |
+
ax.plot(target_account.numpy(), label="Target Account", linestyle=":")
|
270 |
+
ax.plot(output_waveform, label="Transferred Wealth Waveform")
|
271 |
+
ax.set_title('WealthWaveTransfer')
|
272 |
+
ax.legend()
|
273 |
+
plt.show()
|