antitheft159 commited on
Commit
dab6cdb
·
verified ·
1 Parent(s): cced841

Upload wealthwavetransfer.py

Browse files
Files changed (1) hide show
  1. wealthwavetransfer.py +273 -0
wealthwavetransfer.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """WealthWaveTransfer
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1XkEAYjoh8WGeoRnmdkgiNTM-IwU4PC__
8
+ """
9
+
10
+ pip install torch torchvision
11
+
12
+ import numpy as np
13
+ import torch
14
+
15
+ # Generate synthetic data
16
+ np.random.seed(42)
17
+ num_samples = 1000
18
+
19
+ # Features: Age, Income, Investments
20
+ age = np.random.randint(18, 70, size=num_samples)
21
+ income = np.random.normal(50000, 15000, size=num_samples) # Average income
22
+ investments = np.random.normal(10000, 5000, size=num_samples) # Average investments
23
+
24
+ # Wealth target: a simple function of the features (you can modify this)
25
+ wealth = 0.4 * age + 0.5 * (income / 1000) + 0.3 * (investments / 1000) + np.random.normal(0, 5, size=num_samples)
26
+
27
+ # Convert to PyTorch tensors
28
+ X = torch.tensor(np.column_stack((age, income, investments)), dtype=torch.float32)
29
+ y = torch.tensor(wealth, dtype=torch.float32).view(-1, 1)
30
+
31
+ import torch.nn as nn
32
+ import torch.optim as optim
33
+
34
+ class WealthModel(nn.Module):
35
+ def __init__(self):
36
+ super(WealthModel, self).__init__()
37
+ self.fc1 = nn.Linear(3, 64) # 3 input features
38
+ self.fc2 = nn.Linear(64, 32)
39
+ self.fc3 = nn.Linear(32, 1) # Output is a single value (wealth)
40
+
41
+ def forward(self, x):
42
+ x = torch.relu(self.fc1(x))
43
+ x = torch.relu(self.fc2(x))
44
+ x = self.fc3(x) # No activation function on output layer for regression
45
+ return x
46
+
47
+ model = WealthModel()
48
+
49
+ # Training settings
50
+ criterion = nn.MSELoss()
51
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
52
+ num_epochs = 100
53
+
54
+ # Training loop
55
+ for epoch in range(num_epochs):
56
+ model.train()
57
+
58
+ # Forward pass
59
+ outputs = model(X)
60
+ loss = criterion(outputs, y)
61
+
62
+ # Backward pass and optimization
63
+ optimizer.zero_grad()
64
+ loss.backward()
65
+ optimizer.step()
66
+
67
+ if (epoch+1) % 10 == 0:
68
+ print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
69
+
70
+ model.eval()
71
+ with torch.no_grad():
72
+ predicted = model(X)
73
+
74
+ # Optionally, you can visualize or calculate performance metrics
75
+ import matplotlib.pyplot as plt
76
+
77
+ plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5)
78
+ plt.xlabel('True Wealth')
79
+ plt.ylabel('Predicted Wealth')
80
+ plt.title('True vs Predicted Wealth')
81
+ plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red')
82
+ plt.show()
83
+
84
+ class ObfuscationLayer(nn.Module):
85
+ def __init__(self):
86
+ super(ObfuscationLayer, self).__init__()
87
+
88
+ def forward(self, x):
89
+ # Add noise to simulate obfuscation/encryption
90
+ noise = torch.normal(0, 0.1, x.size()).to(x.device) # Adjust the standard deviation for noise level
91
+ return x + noise
92
+
93
+ class EnhancedWealthModel(nn.Module):
94
+ def __init__(self):
95
+ super(EnhancedWealthModel, self).__init__()
96
+ self.obfuscation = ObfuscationLayer()
97
+ self.fc1 = nn.Linear(3, 128) # More units for complexity
98
+ self.fc2 = nn.Linear(128, 64)
99
+ self.fc3 = nn.Linear(64, 32)
100
+ self.fc4 = nn.Linear(32, 1) # Output is a single value (wealth)
101
+
102
+ def forward(self, x):
103
+ x = self.obfuscation(x) # Apply obfuscation
104
+ x = torch.relu(self.fc1(x))
105
+ x = torch.relu(self.fc2(x))
106
+ x = torch.relu(self.fc3(x))
107
+ x = self.fc4(x) # No activation function on output layer for regression
108
+ return x
109
+
110
+ model = EnhancedWealthModel()
111
+
112
+ # Training settings
113
+ criterion = nn.MSELoss()
114
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
115
+ num_epochs = 100
116
+
117
+ # Training loop
118
+ for epoch in range(num_epochs):
119
+ model.train()
120
+
121
+ # Forward pass
122
+ outputs = model(X)
123
+ loss = criterion(outputs, y)
124
+
125
+ # Backward pass and optimization
126
+ optimizer.zero_grad()
127
+ loss.backward()
128
+ optimizer.step()
129
+
130
+ if (epoch + 1) % 10 == 0:
131
+ print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
132
+
133
+ model.eval()
134
+ with torch.no_grad():
135
+ predicted = model(X)
136
+
137
+ # Visualizing True vs. Predicted Wealth
138
+ plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5)
139
+ plt.xlabel('True Wealth')
140
+ plt.ylabel('Predicted Wealth')
141
+ plt.title('True vs Predicted Wealth with Obfuscation Layer')
142
+ plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red')
143
+ plt.show()
144
+
145
+ import torch
146
+ import torch.nn as nn
147
+ import torch.optim as optim
148
+ import matplotlib.pyplot as plt
149
+ import numpy as np
150
+
151
+ # Define grid size
152
+ grid_size = 20
153
+
154
+ # Generate a sine waveform to represent wealth data
155
+ def generate_wealth_waveform(grid_size):
156
+ x = np.linspace(0, 2 * np.pi, grid_size)
157
+ wealth_waveform = np.sin(x)
158
+ return wealth_waveform
159
+
160
+ # Create wealth data for the grid
161
+ wealth_waveform = generate_wealth_waveform(grid_size)
162
+ wealth_data = np.tile(wealth_waveform, (grid_size, 1)) # Repeat waveform along one axis
163
+
164
+ # Convert wealth data to PyTorch tensor
165
+ wealth_data = torch.tensor(wealth_data, dtype=torch.float32)
166
+
167
+ # Define a simple neural network to "transfer" wealth data to a targeted account
168
+ class WealthTransferNet(nn.Module):
169
+ def __init__(self):
170
+ super(WealthTransferNet, self).__init__()
171
+ self.fc1 = nn.Linear(grid_size * grid_size, 128)
172
+ self.fc2 = nn.Linear(128, grid_size * grid_size)
173
+
174
+ def forward(self, x):
175
+ x = torch.relu(self.fc1(x))
176
+ x = self.fc2(x)
177
+ return x
178
+
179
+ # Instantiate the network, loss function, and optimizer
180
+ net = WealthTransferNet()
181
+ criterion = nn.MSELoss()
182
+ optimizer = optim.Adam(net.parameters(), lr=0.01)
183
+
184
+ # Target account: Wealth directed to bottom-right corner of the grid
185
+ target_account = torch.zeros((grid_size, grid_size))
186
+ target_account[-5:, -5:] = 1 # Simulating the transfer to a targeted account
187
+
188
+ # Convert the grid to a single vector for the neural network
189
+ input_data = wealth_data.view(-1)
190
+ target_data = target_account.view(-1)
191
+
192
+ # Training the network
193
+ epochs = 500
194
+ for epoch in range(epochs):
195
+ optimizer.zero_grad()
196
+ output = net(input_data)
197
+ loss = criterion(output, target_data)
198
+ loss.backward()
199
+ optimizer.step()
200
+
201
+ # Reshape the output to the grid size
202
+ output_grid = output.detach().view(grid_size, grid_size)
203
+
204
+ # Plot the original wealth waveform and transferred wealth
205
+ fig, axes = plt.subplots(1, 3, figsize=(18, 6))
206
+ axes[0].imshow(wealth_data, cmap='viridis')
207
+ axes[0].set_title('Original Wealth Waveform')
208
+ axes[1].imshow(target_account, cmap='viridis')
209
+ axes[1].set_title('Target Account Location')
210
+ axes[2].imshow(output_grid, cmap='viridis')
211
+ axes[2].set_title('Transferred Wealth to Target')
212
+ plt.show()
213
+
214
+ import torch
215
+ import torch.nn as nn
216
+ import torch.optim as optim
217
+ import matplotlib.pyplot as plt
218
+ import numpy as np
219
+
220
+ # Define the size of the waveform
221
+ waveform_size = 100
222
+
223
+ # Generate a sine waveform to represent wealth data
224
+ def generate_wealth_waveform(waveform_size):
225
+ x = np.linspace(0, 2 * np.pi, waveform_size)
226
+ wealth_waveform = np.sin(x)
227
+ return wealth_waveform
228
+
229
+ # Create wealth data as a single waveform
230
+ wealth_waveform = generate_wealth_waveform(waveform_size)
231
+ wealth_data = torch.tensor(wealth_waveform, dtype=torch.float32)
232
+
233
+ # Define a neural network to transfer wealth data to a targeted point in the waveform
234
+ class WealthTransferNet(nn.Module):
235
+ def __init__(self):
236
+ super(WealthTransferNet, self).__init__()
237
+ self.fc1 = nn.Linear(waveform_size, 64)
238
+ self.fc2 = nn.Linear(64, waveform_size)
239
+
240
+ def forward(self, x):
241
+ x = torch.relu(self.fc1(x))
242
+ x = self.fc2(x)
243
+ return x
244
+
245
+ # Instantiate the network, loss function, and optimizer
246
+ net = WealthTransferNet()
247
+ criterion = nn.MSELoss()
248
+ optimizer = optim.Adam(net.parameters(), lr=0.01)
249
+
250
+ # Target account: Wealth directed to the end of the waveform (right side)
251
+ target_account = torch.zeros(waveform_size)
252
+ target_account[-10:] = 1 # Simulating the transfer to the last 10 positions
253
+
254
+ # Training the network
255
+ epochs = 1000
256
+ for epoch in range(epochs):
257
+ optimizer.zero_grad()
258
+ output = net(wealth_data)
259
+ loss = criterion(output, target_account)
260
+ loss.backward()
261
+ optimizer.step()
262
+
263
+ # Convert output to numpy for plotting
264
+ output_waveform = output.detach().numpy()
265
+
266
+ # Plot the original and transferred wealth waveform
267
+ fig, ax = plt.subplots(figsize=(10, 5))
268
+ ax.plot(wealth_data.numpy(), label="Original Wealth Waveform", linestyle="--")
269
+ ax.plot(target_account.numpy(), label="Target Account", linestyle=":")
270
+ ax.plot(output_waveform, label="Transferred Wealth Waveform")
271
+ ax.set_title('WealthWaveTransfer')
272
+ ax.legend()
273
+ plt.show()