# -*- coding: utf-8 -*- """WealthWaveTransfer Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1XkEAYjoh8WGeoRnmdkgiNTM-IwU4PC__ """ pip install torch torchvision import numpy as np import torch # Generate synthetic data np.random.seed(42) num_samples = 1000 # Features: Age, Income, Investments age = np.random.randint(18, 70, size=num_samples) income = np.random.normal(50000, 15000, size=num_samples) # Average income investments = np.random.normal(10000, 5000, size=num_samples) # Average investments # Wealth target: a simple function of the features (you can modify this) wealth = 0.4 * age + 0.5 * (income / 1000) + 0.3 * (investments / 1000) + np.random.normal(0, 5, size=num_samples) # Convert to PyTorch tensors X = torch.tensor(np.column_stack((age, income, investments)), dtype=torch.float32) y = torch.tensor(wealth, dtype=torch.float32).view(-1, 1) import torch.nn as nn import torch.optim as optim class WealthModel(nn.Module): def __init__(self): super(WealthModel, self).__init__() self.fc1 = nn.Linear(3, 64) # 3 input features self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) # Output is a single value (wealth) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) # No activation function on output layer for regression return x model = WealthModel() # Training settings criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) num_epochs = 100 # Training loop for epoch in range(num_epochs): model.train() # Forward pass outputs = model(X) loss = criterion(outputs, y) # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') model.eval() with torch.no_grad(): predicted = model(X) # Optionally, you can visualize or calculate performance metrics import matplotlib.pyplot as plt plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5) plt.xlabel('True Wealth') plt.ylabel('Predicted Wealth') plt.title('True vs Predicted Wealth') plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red') plt.show() class ObfuscationLayer(nn.Module): def __init__(self): super(ObfuscationLayer, self).__init__() def forward(self, x): # Add noise to simulate obfuscation/encryption noise = torch.normal(0, 0.1, x.size()).to(x.device) # Adjust the standard deviation for noise level return x + noise class EnhancedWealthModel(nn.Module): def __init__(self): super(EnhancedWealthModel, self).__init__() self.obfuscation = ObfuscationLayer() self.fc1 = nn.Linear(3, 128) # More units for complexity self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 32) self.fc4 = nn.Linear(32, 1) # Output is a single value (wealth) def forward(self, x): x = self.obfuscation(x) # Apply obfuscation x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = torch.relu(self.fc3(x)) x = self.fc4(x) # No activation function on output layer for regression return x model = EnhancedWealthModel() # Training settings criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) num_epochs = 100 # Training loop for epoch in range(num_epochs): model.train() # Forward pass outputs = model(X) loss = criterion(outputs, y) # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() if (epoch + 1) % 10 == 0: print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}') model.eval() with torch.no_grad(): predicted = model(X) # Visualizing True vs. Predicted Wealth plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5) plt.xlabel('True Wealth') plt.ylabel('Predicted Wealth') plt.title('True vs Predicted Wealth with Obfuscation Layer') plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red') plt.show() import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import numpy as np # Define grid size grid_size = 20 # Generate a sine waveform to represent wealth data def generate_wealth_waveform(grid_size): x = np.linspace(0, 2 * np.pi, grid_size) wealth_waveform = np.sin(x) return wealth_waveform # Create wealth data for the grid wealth_waveform = generate_wealth_waveform(grid_size) wealth_data = np.tile(wealth_waveform, (grid_size, 1)) # Repeat waveform along one axis # Convert wealth data to PyTorch tensor wealth_data = torch.tensor(wealth_data, dtype=torch.float32) # Define a simple neural network to "transfer" wealth data to a targeted account class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(grid_size * grid_size, 128) self.fc2 = nn.Linear(128, grid_size * grid_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Instantiate the network, loss function, and optimizer net = WealthTransferNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Target account: Wealth directed to bottom-right corner of the grid target_account = torch.zeros((grid_size, grid_size)) target_account[-5:, -5:] = 1 # Simulating the transfer to a targeted account # Convert the grid to a single vector for the neural network input_data = wealth_data.view(-1) target_data = target_account.view(-1) # Training the network epochs = 500 for epoch in range(epochs): optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Reshape the output to the grid size output_grid = output.detach().view(grid_size, grid_size) # Plot the original wealth waveform and transferred wealth fig, axes = plt.subplots(1, 3, figsize=(18, 6)) axes[0].imshow(wealth_data, cmap='viridis') axes[0].set_title('Original Wealth Waveform') axes[1].imshow(target_account, cmap='viridis') axes[1].set_title('Target Account Location') axes[2].imshow(output_grid, cmap='viridis') axes[2].set_title('Transferred Wealth to Target') plt.show() import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import numpy as np # Define the size of the waveform waveform_size = 100 # Generate a sine waveform to represent wealth data def generate_wealth_waveform(waveform_size): x = np.linspace(0, 2 * np.pi, waveform_size) wealth_waveform = np.sin(x) return wealth_waveform # Create wealth data as a single waveform wealth_waveform = generate_wealth_waveform(waveform_size) wealth_data = torch.tensor(wealth_waveform, dtype=torch.float32) # Define a neural network to transfer wealth data to a targeted point in the waveform class WealthTransferNet(nn.Module): def __init__(self): super(WealthTransferNet, self).__init__() self.fc1 = nn.Linear(waveform_size, 64) self.fc2 = nn.Linear(64, waveform_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Instantiate the network, loss function, and optimizer net = WealthTransferNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Target account: Wealth directed to the end of the waveform (right side) target_account = torch.zeros(waveform_size) target_account[-10:] = 1 # Simulating the transfer to the last 10 positions # Training the network epochs = 1000 for epoch in range(epochs): optimizer.zero_grad() output = net(wealth_data) loss = criterion(output, target_account) loss.backward() optimizer.step() # Convert output to numpy for plotting output_waveform = output.detach().numpy() # Plot the original and transferred wealth waveform fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(wealth_data.numpy(), label="Original Wealth Waveform", linestyle="--") ax.plot(target_account.numpy(), label="Target Account", linestyle=":") ax.plot(output_waveform, label="Transferred Wealth Waveform") ax.set_title('WealthWaveTransfer') ax.legend() plt.show()