File size: 4,329 Bytes
2ce3fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
""".211

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1uZZV_SkJj2tua-CdVEbGu85Tl8vrTbWD
"""

import numpy as np
import pandas as pd

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
  for filename in filenames:
    print(os.path.join(dirname, filename))

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_csv('/content/synthetic_ecommerce_data.csv')

print("Dataset Preview:")
print(data.head())

print("\nDescriptive Statistics:")
print(data.describe(include='all'))

print("\nMissing Values:")
print(data.isnull().sum())

data['Transaction_Date'] = pd.to_datetime(data['Transaction_Date'])
daily_revenue = data.groupby('Transaction_Date')['Revenue'].sum()

plt.figure(figsize=(10, 5))
plt.plot(daily_revenue, label='Daily Revenue')
plt.title('Revenue Over Time')
plt.xlabel('Date')
plt.ylabel('Revenue')
plt.legend()
plt.show()

top_products = data.groupby('Product_ID')['Revenue'].sum().sort_values(ascending=False).head(10)

plt.figure(figsize=(10, 5))
top_products.plot(kind='bar')
plt.title('Top 10 Products by Revenue')
plt.xlabel('Product Id')
plt.show()

category_revenue = data.groupby('Category')['Revenue'].sum()

plt.figure(figsize=(10, 5))
sns.scatterplot(x=data=['Ad_Spend'], y=data['Revenue'])
plt.title('Ad Spend vs Revenue')
plt.xlabel('Ad Spend')
plt.ylabel('Revenue')
plt.show()

plt.figure(figsize=(10, 5))
sns.histplot(data['Ad_CTR'], bins=20, kde=True)
plt.title('Distribution of Ad Click-Through Rate (CTR)')
plt.xlabel('CTR')
plt.ylabel('Frequency')
plt.show()

region_revenue = data.groupby('Region')['Revenue'].sum()

plt.figure(figsize=(10, 5))
region_revenue.plot(kind='bar')
plt.title('Revenue by Region')
plt.xlabel('Region')
plt.ylabel('Revenue')
plt.show()

data['Month'] = data['Transaction_Date'].dt.month
monthly_revenue = data.groupby('Month')['Revenue'].sum()

plt.figure(figsize=(10, 5))
monthly_revenue.plot(kind='bar')
plt.title('Monthly Reveneu Trend')
plt.xlabel('Month')
plt.ylabel('Revenue')
plt.show()

plt.figure(figsize=(10, 5))
sns.scatterplot(x=data['Discount_Applied'], y=data['Revenue'])
plt.title('Discount Applied vs Revenue')
plt.xlabel('Discount (%)')
plt.ylabel('Revenue')
plt.show()

plt.figure(figsize=(10, 5))
sns.scatterplot(x=data['Clicks'], y=data['Revenue'])
plt.title('Clicks vs Revenue')
plt.ylabel('Revenue')
plt.show()

plt.figure(figsize=(10, 5))
sns.histplot(data['Conversion_Rate'], bins=20, kde=True)
plt.title('Distribution of Conversion Rate')
plt.xlabel('Conversion Rate')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(10, 5))
sns.scatterplot(x=data['Conversion_Rate'], y=data['Revenue'])
plt.title('Conversion Rate vs Revenue')
plt.xlabel('Conversion Rate')
plt.ylabel('Revenue')
plt.show()

region_revenue = data.groupby('Region')['Revenue'].sum()
total_revenue = region_revenue.sum()
region_contribution = (region_revenue / total_revenue) * 100

plt.figure(figsize=(10, 5))
region_contribution.plot(kind='bar')
plt.title('Revenue Contribution by Reigion (%)')
plt.xlabel('Region')
plt.ylabel('Revenue Contribution (%)')
plt.show()

data['Ad_Efficiency'] = data['Revenue'] / data['Ad_Spend']
plt.figure(figsize=(10, 5))
sns.boxplot(data=data, x='Category', y='Ad_Efficiency')
plt.title('Ad Spend Efficiency by Category')
plt.xlabel('Category')
plt.ylabel('Revenue per Unit of Ad Spend')
plt.show()

plt.figure(figsize=(10, 5))
sns.histplot(data['Units_Sold'], bins=20, kde=True)
plt.title('Distribution of Units Sold')
plt.xlabel('Units Sold')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(10, 5))
sns.scatterplot(x=data['Units_Sold'], y=data['Revenue'])
plt.title('Units Sold vs Revenue')
plt.xlabel('Units Sold')
plt.ylabel('Revenue')
plt.show()

units_by_category = data.groupby('Category')['Units_Sold'].sum()

plt.figure(figsize=(10, 5))
units_by_category.plot(kind='bar')
plt.title('Units Sold by Category')
plt.xlabel('Category')
plt.ylabel('Units Sold')
plt.show()

data['Revenue_per_Impression'] = data['Revenue'] / data ['Impressions'].astype(float)
plt.figure(figsize=(10, 5))
sns.boxplot(data=data, x='Category', y='Revenue_per_Impression')
plt.title('Revenue per Impression by Category')
plt.xlabel('Category')
plt.ylabel('Revenue per Impression')
plt.show()