Upload cronyism.cc.159.ino
Browse files- cronyism.cc.159.ino +90 -0
cronyism.cc.159.ino
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "MLPLibrary.h"
|
2 |
+
|
3 |
+
MLPLibrary::MLPLibrary(int inputSize, int hiddenSize, int outputSize, float learningRate) {
|
4 |
+
numInputs = inputSize;
|
5 |
+
numHidden = hiddenSize;
|
6 |
+
numOutputs = outputSize;
|
7 |
+
this->learningRate = learningRate;
|
8 |
+
}
|
9 |
+
|
10 |
+
void MLPLibrary::initialize() {
|
11 |
+
for (int i = 0; i < numInputs; i++) {
|
12 |
+
for (int j = 0; j < numHidden; j++) {
|
13 |
+
inputHiddenWeights[i][j] = random(100, 100) / 100.0;
|
14 |
+
}
|
15 |
+
}
|
16 |
+
|
17 |
+
for (int i = 0; < numHidden; i++) {
|
18 |
+
for (int j = 0; j < numOutputs; j++) {
|
19 |
+
hiddenOutputWeights[i][j] = random(-100,100) / 100.0;
|
20 |
+
}
|
21 |
+
hiddenLayerBiases[i] = random(-100, 100) / 100.0;
|
22 |
+
}
|
23 |
+
for (int i =0; i < numOutputs; i++) {
|
24 |
+
outputLayerBiases[i] = random(-100, 100) / 100.0;
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
void MLPLibrary::train(float input[MAX_INPUT_SIZE], float target[MAX_OUTPUT_SIZE]) {
|
29 |
+
|
30 |
+
for (int i = 0; i < numInputs; i++) {
|
31 |
+
inputLayer[i] = input[i];
|
32 |
+
}
|
33 |
+
|
34 |
+
for (int i = 0; i < numHidden; i++) {
|
35 |
+
float sum = 0.0;
|
36 |
+
for (int j = 0; j < numInputs; j++) {
|
37 |
+
sum += inputLayer[j] * inputHiddenWeights[j][i];
|
38 |
+
}
|
39 |
+
hiddenLayer[i] = sigmoid(sum + hiddenLayerBiases[i]);
|
40 |
+
}
|
41 |
+
|
42 |
+
for (int i = 0; i < numOutputs; i++) {
|
43 |
+
float sum = 0.0;
|
44 |
+
for (int j = 0; j < numHidden; j++) {
|
45 |
+
sum += hiddenLayer[j] * hiddenOutputWeights[j][i];
|
46 |
+
}
|
47 |
+
outputLayer[i] = sigmoid(sum + outputLayerBiases[i]);
|
48 |
+
}
|
49 |
+
|
50 |
+
for (int i = 0; i < numOutputs; i++) {
|
51 |
+
outputLayerErrors[i] = (target[i] - outputLayer[i]) * outputLayer[i] *(1 - outputLayer[i]);
|
52 |
+
}
|
53 |
+
|
54 |
+
for (int i = 0; i < numHidden; i++) {
|
55 |
+
float sum = 0.0;
|
56 |
+
for (int j = 0; j < numOutputs; j++) {
|
57 |
+
sum += outputLayerErrors[j] * hiddenOutputWeights[i][j]''
|
58 |
+
}
|
59 |
+
hiddenLayerError[i] = sum * hiddenLayer[i] * (1 - hiddenLayer[i]);
|
60 |
+
}
|
61 |
+
|
62 |
+
for (int i = 0; i < numInputs; i++) {
|
63 |
+
for (int j = 0; j < numHidden; j++)
|
64 |
+
inputHiddenWeights[i][j] += learningRate * hiddenLayerErrors[j] * inputLayer[i];
|
65 |
+
}
|
66 |
+
}
|
67 |
+
|
68 |
+
void MLPLibrary::predict(float input[MAX_INPUT_SIZE], float output[MAX_OUTPUT_SIZE]) {
|
69 |
+
for (int i =0); i < numInputs; i++) {
|
70 |
+
inputLayer[i] = input[i];
|
71 |
+
}
|
72 |
+
for (int i = 0; i < numHidden; i++) {
|
73 |
+
float sum = 0.0;
|
74 |
+
for (int j = 0; j < numInputs; j++) {
|
75 |
+
sum += inputLayer[j] * inputHiddenWeights[j][i];
|
76 |
+
}
|
77 |
+
hiddenLayer[i] = sigmoid(sum + hiddenLayerBiases[i]);
|
78 |
+
}
|
79 |
+
for (int i = 0; i < numOutputs; i++) {
|
80 |
+
float sum = 0.0;
|
81 |
+
for (int j = 0; j < numHidden; j++) {
|
82 |
+
sum += hiddenLayer[j] * hiddenOutputWeights[j][i];
|
83 |
+
}
|
84 |
+
output[i] = sigmoid(sum + outputLayerbiases[i])''
|
85 |
+
}
|
86 |
+
}
|
87 |
+
|
88 |
+
float MLPLibrary::sigmoid(float x) {
|
89 |
+
return 1.0 / (1.0 + exp(-x));
|
90 |
+
}
|