File size: 2,430 Bytes
629e3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# -*- coding: utf-8 -*-
"""quantumjump.195
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1ajVqXJvko89LMeo0a9e_uB75te2fLwMY
"""
# Commented out IPython magic to ensure Python compatibility.
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
# %matplotlib inline
import numpy as np
(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()
len(X_train)
len(X_test)
X_train[0].shape
X_train[0]
plt.matshow(X_train[2])
y_train[2]
y_train[:5]
X_train.shape
X_train = X_train / 255
X_test = X_test / 255
X_train[0]
X_train_flattened = X_train.reshape(len(X_train),28*28)
X_test_flattened = X_test.reshape(len(X_test),28*28)
X_train_flattened.shape
X_train_flattened[0]
model = keras.Sequential([
keras.layers.Dense(10, input_shape=(784,),activation='sigmoid')
])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
model.fit(X_train_flattened, y_train, epochs=5)
model.evaluate(X_test_flattened, y_test)
plt.matshow(X_test[0])
y_predicted = model.predict(X_test_flattened)
y_predicted[0]
np.argmax(y_predicted[1])
y_predicted_labels = [np.argmax(i) for i in y_predicted]
y_predicted_labels[:5]
y_test[:5]
cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels)
cm
import seaborn as sn
plt.figure(figsize = (10,7))
sn.heatmap(cm, annot=True, fmt='d')
plt.xlabel('Predicted')
plt.ylabel('Truth')
model = keras.Sequential([
keras.layers.Dense(100, input_shape=(784,), activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
model.fit(X_train_flattened, y_train, epochs=5)
model.evaluate(X_test_flattened,y_test)
y_predicted = model.predict(X_test_flattened)
y_predicted_labels = [np.argmax(i) for i in y_predicted]
cm = tf.math.confusion_matrix(labels=y_test, predictions=y_predicted_labels)
plt.figure(figsize = (10,7))
sn.heatmap(cm, annot=True, fmt='d')
plt.xlabel('Predicted')
plt.ylabel('Truth')
model = keras.Sequential([
keras.layers.Dense(100, input_shape=(784,),activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
model.compile(
optimizer = 'adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
model.fit(X_train_flattened, y_train, epochs=5) |