# -*- coding: utf-8 -*- """quantumjump.195 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1ajVqXJvko89LMeo0a9e_uB75te2fLwMY """ # Commented out IPython magic to ensure Python compatibility. import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt # %matplotlib inline import numpy as np (X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data() len(X_train) len(X_test) X_train[0].shape X_train[0] plt.matshow(X_train[2]) y_train[2] y_train[:5] X_train.shape X_train = X_train / 255 X_test = X_test / 255 X_train[0] X_train_flattened = X_train.reshape(len(X_train),28*28) X_test_flattened = X_test.reshape(len(X_test),28*28) X_train_flattened.shape X_train_flattened[0] model = keras.Sequential([ keras.layers.Dense(10, input_shape=(784,),activation='sigmoid') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.fit(X_train_flattened, y_train, epochs=5) model.evaluate(X_test_flattened, y_test) plt.matshow(X_test[0]) y_predicted = model.predict(X_test_flattened) y_predicted[0] np.argmax(y_predicted[1]) y_predicted_labels = [np.argmax(i) for i in y_predicted] y_predicted_labels[:5] y_test[:5] cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels) cm import seaborn as sn plt.figure(figsize = (10,7)) sn.heatmap(cm, annot=True, fmt='d') plt.xlabel('Predicted') plt.ylabel('Truth') model = keras.Sequential([ keras.layers.Dense(100, input_shape=(784,), activation='relu'), keras.layers.Dense(10, activation='sigmoid') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.fit(X_train_flattened, y_train, epochs=5) model.evaluate(X_test_flattened,y_test) y_predicted = model.predict(X_test_flattened) y_predicted_labels = [np.argmax(i) for i in y_predicted] cm = tf.math.confusion_matrix(labels=y_test, predictions=y_predicted_labels) plt.figure(figsize = (10,7)) sn.heatmap(cm, annot=True, fmt='d') plt.xlabel('Predicted') plt.ylabel('Truth') model = keras.Sequential([ keras.layers.Dense(100, input_shape=(784,),activation='relu'), keras.layers.Dense(10, activation='sigmoid') ]) model.compile( optimizer = 'adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.fit(X_train_flattened, y_train, epochs=5)