Upload 787antitheft_195.py
Browse files- 787antitheft_195.py +51 -0
787antitheft_195.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""787antitheft.195
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1RuQfAM5faBjQTkTWdhahfka6eF7S0MGu
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import cv2
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import tensorflow as tf
|
15 |
+
|
16 |
+
mnist = tf.keras.datasets.mnist
|
17 |
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
18 |
+
|
19 |
+
x_train = tf.keras.utils.normalize(x_train, axis=1)
|
20 |
+
x_test = tf.keras.utils.normalize(x_test, axis=1)
|
21 |
+
|
22 |
+
model = tf.keras.models.Sequential()
|
23 |
+
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
|
24 |
+
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
25 |
+
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
26 |
+
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
27 |
+
|
28 |
+
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
29 |
+
|
30 |
+
model.fit(x_train, y_train, epochs=3)
|
31 |
+
|
32 |
+
model.save('handwritten.model')
|
33 |
+
|
34 |
+
model = tf.keras.models.load_model('handwritten.model')
|
35 |
+
|
36 |
+
loss, accimaguracy = model.evaluate(x_test, y_test)
|
37 |
+
|
38 |
+
image_number = 1
|
39 |
+
while os.path.isfile(f"digits/digit{image_number}.png"):
|
40 |
+
try:
|
41 |
+
img = cv2.imread(f"digit/digits{image_number}.png")[:,:,0]
|
42 |
+
img = np.invert(np.array([img]))
|
43 |
+
prediction = model.predict(img)
|
44 |
+
print(f"This digit is probably a {np.argmax(prediction)}")
|
45 |
+
plt.imshow(img[0], cmap=plt.cm.binary)
|
46 |
+
plt.show()
|
47 |
+
except:
|
48 |
+
print("Error!")
|
49 |
+
finally:
|
50 |
+
image_number += 1
|
51 |
+
|