File size: 7,573 Bytes
1b05f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# -*- coding: utf-8 -*-
"""suture.195
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1IXS6Im1Ap41KG6o9EdDvJUW9N47b5Hp5
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.emsemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
df_train = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/train.csv')
df_train.info()
df_train['Age'].value_counts()
wrong_values = ['Male', 'Female', 'Non-binary', 'iste mevcut veri kumesini 1000 satira tamamliyorum:']
df_train = df_train[~df_train['Age'].isin(wrong_values)]
df_train['Age'] = df_train['Age'].astype('Int64')
df_train['Age'].value_counts()
print("The Shape of Train Dataset is",df_train.shape)
gender_cols = df_train['Gender'].value_counts().reset_index()
gender_cols.columns = ['Gender', 'Count']
print(gender_cols)
fig, ax = plt.subplots()
ax.bar(gender_cols['Gender'], gender_cols['Count'], color
= ['pink', 'skyblue', 'grey'] \
,width = 0.5)
ax.set_title("Distinct Count Distribution of Gender")
ax.set_xlable("Gender")
ax.set_ylable("Count")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
continuous_vars = ['Age', 'Daily_Usage_Time (minutes)', 'Posts_Per_Day', 'Likes_Received_Per_Day' \
,'Comments_Received_Per_Day', 'Messages_Sent_Per_Day']
for var in continuous_vars:
plt.figure(figsize=(10, 6))
ax = sns.histplot(df_train[var].dropna(), kde=True, color = 'skyblue')
plt.title(f'Histogram of {var}')
plt.xlabel(var)
plt.ylabel('Frequency')
plt.grid(True)
for var in continuous_vars:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df_train, x='Dominant_Emotion', y=var, palette='pastel')
plt.title(f'Box Plot of {var} by Dominant_Emotion')
plt.xlabel('Dominant_Emotion')
plt.ylabel(var)
plt.grid(True)
plt.show()
for var in continuous_vars:
plt.figure(figsize=(10, 6))
sns.violinplot(data=df_train, x='Dominant_Emotion', y=var, palette='pastel', inner='quartile')
plt.title(f'Violin Plot of {var} by Dominant_Emotion')
plt.xlable('Dominant_Emotion')
plt.ylabel(var)
plt.grid(True)
plt.show()
categorical_var = ['Gender', 'Platform']
for var in categorical_vars:
plt.figure(figsize=(10, 6))
ax = sns.countplot(data=df_train, x=var, palette='pastel')
plt.title(f'Count Plot of {var}')
plt.xlabel(var)
plt.ylabel('Count')
plt.grid(True)
for container in ax.containers:
ax.bar_label(container, fmt = '%d')
plt.show()
plt.figure(figsize=(10, 6))
ax = sns.countplot(data=df_train, x=df_train['Dominant_Emotion'], palette='pastel')
plt.title(f'Count Plot of Dominant Emotion')
plt.xlabel(var)
plt.ylabel('Count')
plt.grid(True)
for container in ax.containers:
ax.bar_label(container, fmt = '%d')
plt.show()
sns.pairplot(df_train[continuous_vars + ['Dominant_Emotion']], hue='Dominant_Emotion', palette='pastel', diag_king='kde')
plt.show()
for var in categorical_vars:
plt.figure(figsize=(10, 6))
sns.countplot(data=df_train, x=var, hue='Dominant_Emotion', palette='pastel')
plt.title(f'Count plot of {var} by Dominant_Emotion')
plt.xlabel(var)
plt.ylabel('Count')
plt.grid(True)
plt.show()
plt.figure(figsize=(12, 8))
sns.clustermap(df_train_[continuous_vars].corr(), annot=True, cmap='coolwarm', linewidth=0.5, figsize=(10, 10))
plt.title('Clustered correlation Matrix Heatmap')
plt.show()
df = pd.get_dummies(df_train, columns=['Gender', 'Platform'], drop_first=True)
df = df.applymap(lambda x: 1 if x is True else 0 if x is False else x)
df.head
df.select_dtypes(['Int64', 'Float64']).corr()
train_df = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/train.csv')
test_df = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/test.csv')
def count_outliers(df):
numeric_cols = df.select_dtypes(include=[np.number]).columns
outliers = {}
for col in numeric_cols:
upper_limit = df[col].quantile(0.99)
outliers[col] = (df[col] > upper_limit).sum()
return outliers
outliers_count_train = count_outliers(train_df.drop(columns = ['User_ID']))
outliers_count_test = count_outliers(test_df.drop(columns = ['User_ID']))
print("Outliers count based on the 99th percentile:")
for col, count in outliers_count_train.items():
print(f"{col}: {count}")
print("Outliers count based on the 99th percentile:")
for col, count in outliers_count_test.items():
print(f"{col}: {count}")
def remove_outliers(df):
numeric_cols = df.select_dtypes(include=[no.number]).columns
for col in numeric_cols:
upper_limit = df[col].quantile(0.99)
df = df[df[col] <= upper_limit]
return df
df_cleaned_train = remove_outliers(train_df)
df_cleaner_test = remove_outliers(test_df)
print("Original dataset shape:", df_train.shape)
print("Cleaned dataset shape:", df_cleaned_train.shape)
train_df = df_cleaned_train
test_df = df_cleaned_test
wrong_values = ['Male', 'Female', 'Non-binary', 'iste mevcut veri kumesini 1000 satira tamaliyorum:']
train_df = train_df[~train_df['Age'].isin(wrong_values)]
train_df['Age'] = train_df['Age'].astype('Int64')
test_df = test_df[~test_df['Age'].isin(wrong_values)]
test_df['Age'] = test_df['Age'].astype('Int64')
train_df.fillna(method='ffil', inplace=True)
test_df.fillna(method='ffil', inplace=True)
X_train = train_df.drop('Dominant_Emotion', axis=1)
y_train = train_df['Dominant_Emotion']
X_test = test_df.drop('Dominant_Emotion', axis=1)
y_test = test_df['Dominant_Emotion']
X_train = pd.get_dummies(X_train, drop_first=True)
X_test = pd.get_dummies(X_test, drop_first=True)
X_test = X_test.reindex(columns=X_train.columns, fill_value=0)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train_scaled, y_train)
importances = rf_classifier.feature_importances_feature_names = X_train.columns
feature_importances = pd.DataFrame({'Feature': feature_names 'Importance': importance})
feature_importances = features_importances.sort_values
(by='Importance', acending=False)
top_10_features = feature_importances['Feature'].head
(10).values
print("Top 10 Important Features:")
print(feature_importances.head(10))
plt.figure(figsize=(10, 6))
plt.title("Top 10 Feature Importances")
plt.barh(feature_importances.head(10)['Feature'], feature_importances.head(10)['Importance'], color='b', align='center')
plt.gca().invert_yaxis()
plt.xlabel('Relative Importance')
plt.show()
X_train_top10 = X_train[top_10_features]
X_test_top10 = X_test[top_10_features]
X_train_top10_scaled = scaler.fit_transform(X_train_top10)
X_test_top10_scaled = scaler.transform(X_test_top10)
rf_classifier_top10 = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier_top10.fit(X_train_top10_scaled, y_train)
y_pred_top10 = fr=classifier_top10.predict(X_test_top10_scaled)
accuracy_top10 = accuracy_score(y_test, y_pred_top10)
print(f"\nAccuracy with Top 10 Features: { accuracy_top10:.2f}")
print("Classification Report with Top 10 Features:")
print(classification_report(y_test, y_pred_top10))
print("Confusion Matrix with Top 10 Features:")
print(confusion_matrix(y_test, y_pred_top10)) |