File size: 7,573 Bytes
1b05f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
"""suture.195

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1IXS6Im1Ap41KG6o9EdDvJUW9N47b5Hp5
"""

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.emsemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')

df_train = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/train.csv')

df_train.info()

df_train['Age'].value_counts()

wrong_values = ['Male', 'Female', 'Non-binary', 'iste mevcut veri kumesini 1000 satira tamamliyorum:']
df_train = df_train[~df_train['Age'].isin(wrong_values)]

df_train['Age'] = df_train['Age'].astype('Int64')

df_train['Age'].value_counts()

print("The Shape of Train Dataset is",df_train.shape)

gender_cols = df_train['Gender'].value_counts().reset_index()
gender_cols.columns = ['Gender', 'Count']
print(gender_cols)
fig, ax = plt.subplots()
ax.bar(gender_cols['Gender'], gender_cols['Count'], color
       = ['pink', 'skyblue', 'grey'] \
       ,width = 0.5)
ax.set_title("Distinct Count Distribution of Gender")
ax.set_xlable("Gender")
ax.set_ylable("Count")
plt.show()

import seaborn as sns
import matplotlib.pyplot as plt

continuous_vars = ['Age', 'Daily_Usage_Time (minutes)', 'Posts_Per_Day', 'Likes_Received_Per_Day' \
                   ,'Comments_Received_Per_Day', 'Messages_Sent_Per_Day']

for var in continuous_vars:
  plt.figure(figsize=(10, 6))
  ax = sns.histplot(df_train[var].dropna(), kde=True, color = 'skyblue')
  plt.title(f'Histogram of {var}')
  plt.xlabel(var)
  plt.ylabel('Frequency')
  plt.grid(True)

for var in continuous_vars:
  plt.figure(figsize=(10, 6))
  sns.boxplot(data=df_train, x='Dominant_Emotion', y=var, palette='pastel')
  plt.title(f'Box Plot of {var} by Dominant_Emotion')
  plt.xlabel('Dominant_Emotion')
  plt.ylabel(var)
  plt.grid(True)
  plt.show()

for var in continuous_vars:
  plt.figure(figsize=(10, 6))
  sns.violinplot(data=df_train, x='Dominant_Emotion', y=var, palette='pastel', inner='quartile')
  plt.title(f'Violin Plot of {var} by Dominant_Emotion')
  plt.xlable('Dominant_Emotion')
  plt.ylabel(var)
  plt.grid(True)
  plt.show()

categorical_var = ['Gender', 'Platform']

for var in categorical_vars:
  plt.figure(figsize=(10, 6))
  ax = sns.countplot(data=df_train, x=var, palette='pastel')
  plt.title(f'Count Plot of {var}')
  plt.xlabel(var)
  plt.ylabel('Count')
  plt.grid(True)
  for container in ax.containers:
    ax.bar_label(container, fmt = '%d')
  plt.show()

plt.figure(figsize=(10, 6))
ax = sns.countplot(data=df_train, x=df_train['Dominant_Emotion'], palette='pastel')
plt.title(f'Count Plot of Dominant Emotion')
plt.xlabel(var)
plt.ylabel('Count')
plt.grid(True)
for container in ax.containers:
  ax.bar_label(container, fmt = '%d')
plt.show()

sns.pairplot(df_train[continuous_vars + ['Dominant_Emotion']], hue='Dominant_Emotion', palette='pastel', diag_king='kde')
plt.show()

for var in categorical_vars:
  plt.figure(figsize=(10, 6))
  sns.countplot(data=df_train, x=var, hue='Dominant_Emotion', palette='pastel')
  plt.title(f'Count plot of {var} by Dominant_Emotion')
  plt.xlabel(var)
  plt.ylabel('Count')
  plt.grid(True)
  plt.show()

plt.figure(figsize=(12, 8))
sns.clustermap(df_train_[continuous_vars].corr(), annot=True, cmap='coolwarm', linewidth=0.5, figsize=(10, 10))
plt.title('Clustered correlation Matrix Heatmap')
plt.show()

df = pd.get_dummies(df_train, columns=['Gender', 'Platform'], drop_first=True)
df = df.applymap(lambda x: 1 if x is True else 0 if x is False else x)
df.head

df.select_dtypes(['Int64', 'Float64']).corr()

train_df = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/train.csv')
test_df = pd.read_csv('/kaggle/input/social-media-usage-and-emotional-well-being/test.csv')

def count_outliers(df):
  numeric_cols = df.select_dtypes(include=[np.number]).columns
  outliers = {}
  for col in numeric_cols:
    upper_limit = df[col].quantile(0.99)
    outliers[col] = (df[col] > upper_limit).sum()
  return outliers

outliers_count_train = count_outliers(train_df.drop(columns = ['User_ID']))
outliers_count_test = count_outliers(test_df.drop(columns = ['User_ID']))

print("Outliers count based on the 99th percentile:")
for col, count in outliers_count_train.items():
  print(f"{col}: {count}")

print("Outliers count based on the 99th percentile:")
for col, count in outliers_count_test.items():
  print(f"{col}: {count}")

def remove_outliers(df):
  numeric_cols = df.select_dtypes(include=[no.number]).columns
  for col in numeric_cols:
    upper_limit = df[col].quantile(0.99)
    df = df[df[col] <= upper_limit]
  return df

df_cleaned_train = remove_outliers(train_df)
df_cleaner_test = remove_outliers(test_df)

print("Original dataset shape:", df_train.shape)
print("Cleaned dataset shape:", df_cleaned_train.shape)

train_df = df_cleaned_train
test_df = df_cleaned_test

wrong_values = ['Male', 'Female', 'Non-binary', 'iste mevcut veri kumesini 1000 satira tamaliyorum:']
train_df = train_df[~train_df['Age'].isin(wrong_values)]
train_df['Age'] = train_df['Age'].astype('Int64')

test_df = test_df[~test_df['Age'].isin(wrong_values)]
test_df['Age'] = test_df['Age'].astype('Int64')

train_df.fillna(method='ffil', inplace=True)
test_df.fillna(method='ffil', inplace=True)

X_train = train_df.drop('Dominant_Emotion', axis=1)
y_train = train_df['Dominant_Emotion']

X_test = test_df.drop('Dominant_Emotion', axis=1)
y_test = test_df['Dominant_Emotion']

X_train = pd.get_dummies(X_train, drop_first=True)
X_test = pd.get_dummies(X_test, drop_first=True)

X_test = X_test.reindex(columns=X_train.columns, fill_value=0)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train_scaled, y_train)

importances = rf_classifier.feature_importances_feature_names = X_train.columns
feature_importances = pd.DataFrame({'Feature': feature_names 'Importance': importance})

feature_importances = features_importances.sort_values
(by='Importance', acending=False)
top_10_features = feature_importances['Feature'].head
(10).values

print("Top 10 Important Features:")
print(feature_importances.head(10))

plt.figure(figsize=(10, 6))
plt.title("Top 10 Feature Importances")
plt.barh(feature_importances.head(10)['Feature'], feature_importances.head(10)['Importance'], color='b', align='center')
plt.gca().invert_yaxis()
plt.xlabel('Relative Importance')
plt.show()

X_train_top10 = X_train[top_10_features]
X_test_top10 = X_test[top_10_features]

X_train_top10_scaled = scaler.fit_transform(X_train_top10)
X_test_top10_scaled = scaler.transform(X_test_top10)

rf_classifier_top10 = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier_top10.fit(X_train_top10_scaled, y_train)

y_pred_top10 = fr=classifier_top10.predict(X_test_top10_scaled)

accuracy_top10 = accuracy_score(y_test, y_pred_top10)
print(f"\nAccuracy with Top 10 Features: { accuracy_top10:.2f}")
print("Classification Report with Top 10 Features:")
print(classification_report(y_test, y_pred_top10))
print("Confusion Matrix with Top 10 Features:")
print(confusion_matrix(y_test, y_pred_top10))