# -*- coding: utf-8 -*- """therollercoasterstrategy.195 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1Pn8vxMsTuQGWNoH9Bqo7XTJ1stXjNDHx """ !pip install neuralprophet from neuralprophet import NeuralProphet import yfinance as yf import pandas as pd import matplotlib.pyplot as plt stock_symbol = 'DAL' start_date = '2020-11-01' end_date = '2024-12-01' stock_data = yf.download(stock_symbol, start = start_date, end=end_date) print(stock_data.head()) stock_data.to_csv('stock_data.csv') stocks = pd.read_csv('stock_data.csv') stocks['Date'] = pd.to_datetime(stocks['Date']) stocks = stocks[['Date', 'Close']] stocks.columns = ['ds', 'y'] plt.plot(stocks['ds'], stocks['y'], label = 'actual', c = 'g') plt.show() model = NeuralProphet() model.fit(stocks) future = model.make_future_dataframe(stocks, periods = 300) forecast = model.predict(future) actual_prediction = model.predict(stocks) plt.title(".159 Est. 1367") plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label = "prediction_Actual", c = 'r') plt.plot(forecast['ds'], forecast['yhat1'], label = 'future_predictions', c = 'b') plt.plot(stocks['ds'], stocks['y'], label = 'actual', c = 'g') plt.legend() plt.show() """S&P 500""" model.plot_components(forecast)