update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: xtreme_s_xlsr_mls
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# xtreme_s_xlsr_mls
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6302
|
18 |
+
- Wer: 0.3036
|
19 |
+
- Cer: 0.0952
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- total_eval_batch_size: 8
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 3000
|
50 |
+
- num_epochs: 100.0
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
57 |
+
| 3.0446 | 1.91 | 500 | 2.9866 | 1.0 | 1.0 |
|
58 |
+
| 0.8789 | 3.82 | 1000 | 0.8574 | 0.7225 | 0.2355 |
|
59 |
+
| 0.4766 | 5.72 | 1500 | 0.4813 | 0.4624 | 0.1394 |
|
60 |
+
| 0.3779 | 7.63 | 2000 | 0.4465 | 0.4154 | 0.1309 |
|
61 |
+
| 0.3244 | 9.54 | 2500 | 0.4213 | 0.3683 | 0.1163 |
|
62 |
+
| 0.346 | 11.45 | 3000 | 0.4606 | 0.4033 | 0.1299 |
|
63 |
+
| 0.3092 | 13.36 | 3500 | 0.4160 | 0.3585 | 0.1115 |
|
64 |
+
| 0.3287 | 15.27 | 4000 | 0.4364 | 0.3631 | 0.1165 |
|
65 |
+
| 0.3165 | 17.18 | 4500 | 0.4218 | 0.3451 | 0.1056 |
|
66 |
+
| 0.2874 | 19.08 | 5000 | 0.4583 | 0.3650 | 0.1151 |
|
67 |
+
| 0.3089 | 20.99 | 5500 | 0.4424 | 0.3485 | 0.1137 |
|
68 |
+
| 0.2689 | 22.9 | 6000 | 0.4427 | 0.3542 | 0.1128 |
|
69 |
+
| 0.234 | 24.81 | 6500 | 0.4204 | 0.3431 | 0.1069 |
|
70 |
+
| 0.2363 | 26.72 | 7000 | 0.4792 | 0.3689 | 0.1191 |
|
71 |
+
| 0.2796 | 28.62 | 7500 | 0.4867 | 0.3662 | 0.1154 |
|
72 |
+
| 0.2447 | 30.53 | 8000 | 0.4908 | 0.3584 | 0.1160 |
|
73 |
+
| 0.22 | 32.44 | 8500 | 0.5315 | 0.3626 | 0.1240 |
|
74 |
+
| 0.1961 | 34.35 | 9000 | 0.5121 | 0.3610 | 0.1168 |
|
75 |
+
| 0.1959 | 36.26 | 9500 | 0.5140 | 0.3648 | 0.1179 |
|
76 |
+
| 0.1748 | 38.17 | 10000 | 0.5464 | 0.3763 | 0.1206 |
|
77 |
+
| 0.197 | 40.08 | 10500 | 0.5199 | 0.3515 | 0.1128 |
|
78 |
+
| 0.2166 | 41.98 | 11000 | 0.5336 | 0.3607 | 0.1191 |
|
79 |
+
| 0.2078 | 43.89 | 11500 | 0.5389 | 0.3518 | 0.1136 |
|
80 |
+
| 0.1827 | 45.8 | 12000 | 0.5014 | 0.3287 | 0.1053 |
|
81 |
+
| 0.1783 | 47.71 | 12500 | 0.5408 | 0.3545 | 0.1121 |
|
82 |
+
| 0.1489 | 49.62 | 13000 | 0.5292 | 0.3472 | 0.1098 |
|
83 |
+
| 0.1665 | 51.53 | 13500 | 0.5052 | 0.3300 | 0.1033 |
|
84 |
+
| 0.1631 | 53.43 | 14000 | 0.5241 | 0.3362 | 0.1081 |
|
85 |
+
| 0.1943 | 55.34 | 14500 | 0.5453 | 0.3373 | 0.1076 |
|
86 |
+
| 0.1504 | 57.25 | 15000 | 0.5958 | 0.3594 | 0.1149 |
|
87 |
+
| 0.136 | 59.16 | 15500 | 0.5645 | 0.3367 | 0.1082 |
|
88 |
+
| 0.1224 | 61.07 | 16000 | 0.5322 | 0.3302 | 0.1039 |
|
89 |
+
| 0.1156 | 62.98 | 16500 | 0.5728 | 0.3332 | 0.1061 |
|
90 |
+
| 0.114 | 64.88 | 17000 | 0.5994 | 0.3410 | 0.1125 |
|
91 |
+
| 0.1445 | 66.79 | 17500 | 0.6048 | 0.3471 | 0.1098 |
|
92 |
+
| 0.1281 | 68.7 | 18000 | 0.5747 | 0.3278 | 0.1042 |
|
93 |
+
| 0.1233 | 70.61 | 18500 | 0.6021 | 0.3375 | 0.1082 |
|
94 |
+
| 0.1109 | 72.52 | 19000 | 0.5851 | 0.3188 | 0.1021 |
|
95 |
+
| 0.0943 | 74.43 | 19500 | 0.5944 | 0.3238 | 0.1033 |
|
96 |
+
| 0.1418 | 76.34 | 20000 | 0.5904 | 0.3143 | 0.0997 |
|
97 |
+
| 0.1317 | 78.24 | 20500 | 0.6291 | 0.3283 | 0.1047 |
|
98 |
+
| 0.1177 | 80.15 | 21000 | 0.6114 | 0.3190 | 0.1000 |
|
99 |
+
| 0.1138 | 82.06 | 21500 | 0.6155 | 0.3245 | 0.1023 |
|
100 |
+
| 0.1074 | 83.97 | 22000 | 0.6094 | 0.3153 | 0.1004 |
|
101 |
+
| 0.11 | 85.88 | 22500 | 0.6041 | 0.3141 | 0.0988 |
|
102 |
+
| 0.1096 | 87.78 | 23000 | 0.6243 | 0.3110 | 0.0986 |
|
103 |
+
| 0.1017 | 89.69 | 23500 | 0.6110 | 0.3121 | 0.0984 |
|
104 |
+
| 0.1015 | 91.6 | 24000 | 0.6385 | 0.3093 | 0.0978 |
|
105 |
+
| 0.0952 | 93.51 | 24500 | 0.6155 | 0.3036 | 0.0953 |
|
106 |
+
| 0.0896 | 95.42 | 25000 | 0.6215 | 0.3033 | 0.0951 |
|
107 |
+
| 0.0953 | 97.33 | 25500 | 0.6293 | 0.3037 | 0.0953 |
|
108 |
+
| 0.0834 | 99.24 | 26000 | 0.6302 | 0.3036 | 0.0952 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.18.0.dev0
|
114 |
+
- Pytorch 1.11.0+cu113
|
115 |
+
- Datasets 1.18.4.dev0
|
116 |
+
- Tokenizers 0.11.6
|