File size: 49,798 Bytes
ddf9470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:98928
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Abnormal wakefulness, loss of self-awareness, involuntary trance
  sentences:
  - 'See also: Neonatal lupus erythematosus'
  - 'Scalp-ear-nipple syndrome, as its name suggests, is a condition characterized
    by abnormalities of the scalp, ears, and nipples. Less frequently, affected individuals
    have problems affecting other parts of the body. The features of this disorder
    can vary even within the same family.


    Babies with scalp-ear-nipple syndrome are born with a condition called aplasia
    cutis congenita, which involves patchy abnormal areas (lesions) on the scalp.
    These lesions are firm, raised, hairless nodules that resemble open wounds or
    ulcers at birth, but that heal during childhood.


    The external ears of people with scalp-ear-nipple syndrome may be small, cup-shaped,
    folded over, or otherwise mildly misshapen. Hearing is generally normal. Affected
    individuals also have nipples that are underdeveloped (hypothelia) or absent (athelia).
    In some cases the underlying breast tissue is absent as well (amastia).'
  - "Abnormal state of wakefulness or altered state of consciousness\n\nFor other\
    \ uses, see Trance (disambiguation).\n\nThis article needs additional citations\
    \ for verification. Please help improve this article by adding citations to reliable\
    \ sources. Unsourced material may be challenged and removed.  \nFind sources:\
    \ \"Trance\" – news · newspapers · books · scholar · JSTOR (August 2010) (Learn\
    \ how and when to remove this template message)  \n  \nDissociative trance  \n\
    The Oracle at Delphi was famous for her  divinatory trances throughout the ancient\
    \ Mediterranean world. Oil painting, John Collier, 1891  \nSpecialtyPsychiatry\
    \  \n  \nTrance is an abnormal state of wakefulness in which a person is not self-aware\
    \ and is either altogether unresponsive to external stimuli (but nevertheless\
    \ capable of pursuing and realizing an aim) or is selectively responsive in following\
    \ the directions of the person (if any) who has induced the trance. Trance states\
    \ may occur involuntarily and unbidden."
- source_sentence: respiratory infections, recurrent infections, primary immunodeficiency
  sentences:
  - 'A number sign (#) is used with this entry because of evidence that autosomal
    dominant common variable immunodeficiency-12 (CVID12) is caused by heterozygous
    mutation in the NFKB1 gene (164011) on chromosome 4q24.


    Description


    Common variable immunodeficiency-12 is an autosomal dominant primary immunodeficiency
    characterized by recurrent infections, mainly respiratory, associated with hypogammaglobulinemia.
    The disorder shows a highly variable age at onset and highly variable disease
    severity, even within the same family. Some patients have features of autoimmunity
    (summary by Fliegauf et al., 2015).


    For a general description and a discussion of genetic heterogeneity of common
    variable immunodeficiency, see CVID1 (607594).


    Clinical Features'
  - Kyasanura forest disease (KFD), caused by the KFD virus, is an arbovirus characterized
    by an initial fever, headache and myalgia that can progress to a hemorrhagic disease
    and that in some cases is followed by a second phase characterized by neurological
    manifestations.
  - 'A number sign (#) is used with this entry because of evidence that X-linked syndromic
    mental retardation-33 (MRXS33) is caused by mutation in the TAF1 gene (313650)
    on chromosome Xq13.


    Description


    X-linked syndromic mental retardation-33 is an X-linked recessive neurodevelopmental
    disorder characterized by delayed psychomotor development, intellectual disability,
    and characteristic facial features (summary by O''Rawe et al., 2015).


    Clinical Features'
- source_sentence: Common variable immunodeficiency, recurrent infections, impaired
    antibody production
  sentences:
  - 'A number sign (#) is used with this entry because this form of common variable
    immunodeficiency (CVID), referred to here as CVID5, is caused by homozygous mutation
    in the CD20 gene (MS4A1; 112210) on chromosome 11q13.


    For a general description and a discussion of genetic heterogeneity of common
    variable immunodeficiency, see CVID1 (607594).


    Clinical Features'
  - 'A number sign (#) is used with this entry because of evidence that the Stanescu
    type of spondyloepiphyseal dysplasia (SEDSTN) is caused by heterozygous mutation
    in the COL2A1 gene (120140) on chromosome 12q13.


    Description'
  - '##  Description


    Macular dystrophies are inherited retinal dystrophies in which various forms of
    deposits, pigmentary changes, and atrophic lesions are observed in the macula
    lutea, the cone-rich region of the central retina. Vitelliform macular dystrophies
    (VMDs) form a subset of macular dystrophies characterized by round yellow deposits,
    usually at the center of the macula and containing lipofuscin, a chemically heterogeneous
    pigment visualized by autofluorescence imaging of the fundus (summary by Manes
    et al., 2013). In contrast to typical VMD (see 153700), patients with atypical
    VMD may exhibit normal electrooculography, even when severe loss of vision is
    present, and fluorescein angiography is thus the most reliable test for identifying
    affected individuals (Hittner et al., 1984).


    ### Genetic Heterogeneity of Vitelliform Macular Dystrophy'
- source_sentence: Growth retardation, hearing impairment, joint hypermobility, sacral
    caudal remnant
  sentences:
  - 'A number sign (#) is used with this entry because Bruck syndrome-2 (BRKS2) is
    caused by homozygous mutation in the PLOD2 gene (601865), which encodes telopeptide
    lysyl hydroxylase, on chromosome 3q24.


    For a phenotypic description and a discussion of genetic heterogeneity of Bruck
    syndrome, see Bruck syndrome-1 (259450).


    Clinical Features


    Ha-Vinh et al. (2004) described a child with Bruck syndrome who was the offspring
    of healthy nonconsanguineous Turkish parents. At birth, pterygia were present
    at the left elbow and at both knees, and extension of these joints was limited.
    Contractures were also present at the wrists, and there were bilateral clubfeet.
    Bilateral inguinal hernias were present. A fracture of the left arm was recognized
    immediately after birth, and the boy had 2 more fractures in the first 3 months
    of life. His urine contained high levels of hydroxyproline but low levels of collagen
    crosslinks degradation products.'
  - '## Summary


    ### Clinical characteristics.


    Thrombocytopenia absent radius (TAR) syndrome is characterized by bilateral absence
    of the radii with the presence of both thumbs and thrombocytopenia (<50 platelets/nL)
    that is generally transient. Thrombocytopenia may be congenital or may develop
    within the first few weeks to months of life; in general, thrombocytopenic episodes
    decrease with age. Cow''s milk allergy is common and can be associated with exacerbation
    of thrombocytopenia. Other anomalies of the skeleton (upper and lower limbs, ribs,
    and vertebrae), heart, and genitourinary system (renal anomalies and agenesis
    of uterus, cervix, and upper part of the vagina) can occur.


    ### Diagnosis/testing.'
  - A rare multiple congenital anomalies/dysmorphic syndrome characterized by global
    developmental delay, intellectual disability, growth retardation, hearing impairment,
    characteristic facial dysmorphology (including prominent supraorbital ridges,
    downslanting palpebral fissures, deep-set eyes, long face, sagging cheeks, anteverted
    nares, and pointed chin), generalized hypotonia, joint hypermobility, gluteal
    crease with sacral caudal remnant and sacral dimple, and variable neurological
    features. Various ophthalmic, cutaneous, musculoskeletal, gastrointestinal, and
    cardiovascular anomalies have also been described.
- source_sentence: ear malformations, nipple abnormalities, dental anomalies
  sentences:
  - "This article is an orphan, as no other articles link to it. Please introduce\
    \ links to this page from related articles; try the Find link tool for suggestions.\
    \ (July 2016)  \n  \nInguinal lymphadenopathy  \nInguinal lymphadenopathy  \n\
    \  \nInguinal lymphadenopathy causes swollen lymph nodes in the groin area. It\
    \ can be a symptom of infective or neoplastic processes. Infective aetiologies\
    \ include Tuberculosis, HIV, non-specific or reactive lymphadenopathy to recent\
    \ lower limb infection or groin infections. Another notable infectious cause is\
    \ Lymphogranuloma venereum, which is a sexually transmitted infection of the lymphatic\
    \ system. Neoplastic aetiologies include lymphoma, leukaemia and metastatic disease\
    \ from primary tumours in the lower limb, external genitalia or perianal region\
    \ and melanoma.\n\n## References[edit]\n\n  * Ferrer R (October 1998). \"Lymphadenopathy:\
    \ differential diagnosis and evaluation\". Am Fam Physician. 58 (6): 1313–20.\
    \ PMID 9803196.\n\n## Further reading[edit]"
  - 'A number sign (#) is used with this entry because scalp-ear-nipple syndrome (SENS)
    is caused by heterozygous mutation in the KCTD1 gene (613420) on chromosome 18q11.


    Description


    Scalp-ear-nipple syndrome is characterized by aplasia cutis congenita of the scalp,
    breast anomalies that range from hypothelia or athelia to amastia, and minor anomalies
    of the external ears. Less frequent clinical characteristics include nail dystrophy,
    dental anomalies, cutaneous syndactyly of the digits, and renal malformations.
    Penetrance appears to be high, although there is substantial variable expressivity
    within families (Marneros et al., 2013).


    Clinical Features'
  - Familial multiple meningioma is a rare, benign neoplasm of the central nervous
    system characterized by the development of multiple or, rarely, solitary meningiomas
    in two or more blood relatives, without other apparent syndromic manifestations.
    Depending on the localization, growth rate and size of the tumors, patients can
    present with subtle, gradually worsening or abrupt and severe neurological compromise
    or can be completely asymptomatic.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.18070477009024494
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5426514825956167
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7380747743876236
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8160721959604641
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18070477009024494
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1808838275318722
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1476149548775247
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08160721959604642
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18070477009024494
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5426514825956167
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7380747743876236
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8160721959604641
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.49469594615283
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39074511770043246
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3952600557331103
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.18274602492479589
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5412548345509239
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7430167597765364
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8167168027503223
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.18274602492479589
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18041827818364134
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1486033519553073
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08167168027503223
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.18274602492479589
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5412548345509239
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7430167597765364
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8167168027503223
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4956715454485796
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.391808804169147
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.39626188359327835
      name: Dot Map@100
---

# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'ear malformations, nipple abnormalities, dental anomalies',
    'A number sign (#) is used with this entry because scalp-ear-nipple syndrome (SENS) is caused by heterozygous mutation in the KCTD1 gene (613420) on chromosome 18q11.\n\nDescription\n\nScalp-ear-nipple syndrome is characterized by aplasia cutis congenita of the scalp, breast anomalies that range from hypothelia or athelia to amastia, and minor anomalies of the external ears. Less frequent clinical characteristics include nail dystrophy, dental anomalies, cutaneous syndactyly of the digits, and renal malformations. Penetrance appears to be high, although there is substantial variable expressivity within families (Marneros et al., 2013).\n\nClinical Features',
    'This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2016)  \n  \nInguinal lymphadenopathy  \nInguinal lymphadenopathy  \n  \nInguinal lymphadenopathy causes swollen lymph nodes in the groin area. It can be a symptom of infective or neoplastic processes. Infective aetiologies include Tuberculosis, HIV, non-specific or reactive lymphadenopathy to recent lower limb infection or groin infections. Another notable infectious cause is Lymphogranuloma venereum, which is a sexually transmitted infection of the lymphatic system. Neoplastic aetiologies include lymphoma, leukaemia and metastatic disease from primary tumours in the lower limb, external genitalia or perianal region and melanoma.\n\n## References[edit]\n\n  * Ferrer R (October 1998). "Lymphadenopathy: differential diagnosis and evaluation". Am Fam Physician. 58 (6): 1313–20. PMID 9803196.\n\n## Further reading[edit]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1807     |
| cosine_accuracy@3   | 0.5427     |
| cosine_accuracy@5   | 0.7381     |
| cosine_accuracy@10  | 0.8161     |
| cosine_precision@1  | 0.1807     |
| cosine_precision@3  | 0.1809     |
| cosine_precision@5  | 0.1476     |
| cosine_precision@10 | 0.0816     |
| cosine_recall@1     | 0.1807     |
| cosine_recall@3     | 0.5427     |
| cosine_recall@5     | 0.7381     |
| cosine_recall@10    | 0.8161     |
| cosine_ndcg@10      | 0.4947     |
| cosine_mrr@10       | 0.3907     |
| cosine_map@100      | 0.3953     |
| dot_accuracy@1      | 0.1827     |
| dot_accuracy@3      | 0.5413     |
| dot_accuracy@5      | 0.743      |
| dot_accuracy@10     | 0.8167     |
| dot_precision@1     | 0.1827     |
| dot_precision@3     | 0.1804     |
| dot_precision@5     | 0.1486     |
| dot_precision@10    | 0.0817     |
| dot_recall@1        | 0.1827     |
| dot_recall@3        | 0.5413     |
| dot_recall@5        | 0.743      |
| dot_recall@10       | 0.8167     |
| dot_ndcg@10         | 0.4957     |
| dot_mrr@10          | 0.3918     |
| **dot_map@100**     | **0.3963** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 98,928 training samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                          | chunks                                                                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.4 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 159.93 tokens</li><li>max: 334 tokens</li></ul> |
* Samples:
  | queries                                                                  | chunks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:-------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>fever, malaise, headaches, lymphadenopathy</code>                  | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
  | <code>rash, papulovesicular, generalized, constitutional symptoms</code> | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
  | <code>myalgia, diaphoresis, nausea, vomiting</code>                      | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 9,308 evaluation samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                          | chunks                                                                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.8 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 166.19 tokens</li><li>max: 299 tokens</li></ul> |
* Samples:
  | queries                                                                                                | chunks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:-------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>facial features, overgrowth, learning disabilities, delayed development</code>                   | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
  | <code>long face, high forehead, flushed cheeks, small chin, down-slanting palpebral fissures</code>    | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
  | <code>intellectual disability, behavioral problems, speech and language difficulties, hypotonia</code> | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 25
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | loss      | dot_map@100 |
|:----------:|:--------:|:-------------:|:---------:|:-----------:|
| 0          | 0        | -             | 1.8701    | 0.2095      |
| 0.1295     | 100      | 1.5494        | -         | -           |
| 0.2591     | 200      | 0.9993        | -         | -           |
| 0.3886     | 300      | 0.7225        | -         | -           |
| 0.5181     | 400      | 0.6533        | -         | -           |
| 0.6477     | 500      | 0.6618        | 0.5939    | 0.3722      |
| 0.7772     | 600      | 0.6454        | -         | -           |
| 0.9067     | 700      | 0.5568        | -         | -           |
| 1.0363     | 800      | 0.5435        | -         | -           |
| 1.1658     | 900      | 0.499         | -         | -           |
| 1.2953     | 1000     | 0.5386        | 0.4768    | 0.3842      |
| 1.4249     | 1100     | 0.5077        | -         | -           |
| 1.5544     | 1200     | 0.4929        | -         | -           |
| 1.6839     | 1300     | 0.5194        | -         | -           |
| 1.8135     | 1400     | 0.5157        | -         | -           |
| 1.9430     | 1500     | 0.4337        | 0.4455    | 0.3894      |
| 2.0725     | 1600     | 0.4373        | -         | -           |
| 2.2021     | 1700     | 0.4569        | -         | -           |
| 2.3316     | 1800     | 0.4084        | -         | -           |
| 2.4611     | 1900     | 0.42          | -         | -           |
| 2.5907     | 2000     | 0.4112        | 0.4578    | 0.3886      |
| 2.7202     | 2100     | 0.4498        | -         | -           |
| 2.8497     | 2200     | 0.415         | -         | -           |
| 2.9793     | 2300     | 0.3734        | -         | -           |
| 3.1088     | 2400     | 0.3359        | -         | -           |
| 3.2383     | 2500     | 0.3923        | 0.4339    | 0.3929      |
| 3.3679     | 2600     | 0.3345        | -         | -           |
| 3.4974     | 2700     | 0.3324        | -         | -           |
| 3.6269     | 2800     | 0.3574        | -         | -           |
| 3.7565     | 2900     | 0.4078        | -         | -           |
| 3.8860     | 3000     | 0.3221        | 0.4293    | 0.3904      |
| 4.0155     | 3100     | 0.2895        | -         | -           |
| 4.1451     | 3200     | 0.2821        | -         | -           |
| 4.2746     | 3300     | 0.3192        | -         | -           |
| 4.4041     | 3400     | 0.28          | -         | -           |
| 4.5337     | 3500     | 0.2716        | 0.4486    | 0.3885      |
| 4.6632     | 3600     | 0.3147        | -         | -           |
| 4.7927     | 3700     | 0.3565        | -         | -           |
| 4.9223     | 3800     | 0.2465        | -         | -           |
| 5.0518     | 3900     | 0.2436        | -         | -           |
| 5.1813     | 4000     | 0.2297        | 0.4486    | 0.3917      |
| 5.3109     | 4100     | 0.2538        | -         | -           |
| 5.4404     | 4200     | 0.2448        | -         | -           |
| 5.5699     | 4300     | 0.2433        | -         | -           |
| 5.6995     | 4400     | 0.3017        | -         | -           |
| 5.8290     | 4500     | 0.2958        | 0.4737    | 0.3934      |
| 5.9585     | 4600     | 0.2142        | -         | -           |
| 6.0881     | 4700     | 0.1939        | -         | -           |
| 6.2176     | 4800     | 0.2449        | -         | -           |
| 6.3472     | 4900     | 0.2026        | -         | -           |
| 6.4767     | 5000     | 0.2006        | 0.4901    | 0.3895      |
| 6.6062     | 5100     | 0.2118        | -         | -           |
| 6.7358     | 5200     | 0.3064        | -         | -           |
| 6.8653     | 5300     | 0.2276        | -         | -           |
| 6.9948     | 5400     | 0.1809        | -         | -           |
| 7.1244     | 5500     | 0.1782        | 0.4992    | 0.3915      |
| 7.2539     | 5600     | 0.2211        | -         | -           |
| 7.3834     | 5700     | 0.1728        | -         | -           |
| 7.5130     | 5800     | 0.1651        | -         | -           |
| 7.6425     | 5900     | 0.2158        | -         | -           |
| 7.7720     | 6000     | 0.2864        | 0.5113    | 0.3892      |
| 7.9016     | 6100     | 0.179         | -         | -           |
| 8.0311     | 6200     | 0.1677        | -         | -           |
| 8.1606     | 6300     | 0.1517        | -         | -           |
| 8.2902     | 6400     | 0.1851        | -         | -           |
| 8.4197     | 6500     | 0.1646        | 0.5030    | 0.3933      |
| 8.5492     | 6600     | 0.1608        | -         | -           |
| 8.6788     | 6700     | 0.217         | -         | -           |
| 8.8083     | 6800     | 0.2357        | -         | -           |
| 8.9378     | 6900     | 0.1404        | -         | -           |
| 9.0674     | 7000     | 0.1465        | 0.5153    | 0.3877      |
| 9.1969     | 7100     | 0.1791        | -         | -           |
| 9.3264     | 7200     | 0.1261        | -         | -           |
| 9.4560     | 7300     | 0.1406        | -         | -           |
| 9.5855     | 7400     | 0.1626        | -         | -           |
| 9.7150     | 7500     | 0.223         | 0.5326    | 0.3939      |
| 9.8446     | 7600     | 0.1806        | -         | -           |
| 9.9741     | 7700     | 0.1289        | -         | -           |
| 10.1036    | 7800     | 0.1269        | -         | -           |
| 10.2332    | 7900     | 0.1609        | -         | -           |
| 10.3627    | 8000     | 0.1279        | 0.5113    | 0.3933      |
| 10.4922    | 8100     | 0.1264        | -         | -           |
| 10.6218    | 8200     | 0.1453        | -         | -           |
| 10.7513    | 8300     | 0.2227        | -         | -           |
| 10.8808    | 8400     | 0.1314        | -         | -           |
| 11.0104    | 8500     | 0.1192        | 0.5444    | 0.3925      |
| 11.1399    | 8600     | 0.1164        | -         | -           |
| 11.2694    | 8700     | 0.1418        | -         | -           |
| 11.3990    | 8800     | 0.1202        | -         | -           |
| 11.5285    | 8900     | 0.1152        | -         | -           |
| **11.658** | **9000** | **0.1454**    | **0.529** | **0.3963**  |
| 11.7876    | 9100     | 0.1952        | -         | -           |
| 11.9171    | 9200     | 0.1079        | -         | -           |
| 12.0466    | 9300     | 0.1139        | -         | -           |
| 12.1762    | 9400     | 0.1067        | -         | -           |
| 12.3057    | 9500     | 0.1219        | 0.5257    | 0.3938      |
| 12.4352    | 9600     | 0.119         | -         | -           |
| 12.5648    | 9700     | 0.1195        | -         | -           |
| 12.6943    | 9800     | 0.158         | -         | -           |
| 12.8238    | 9900     | 0.156         | -         | -           |
| 12.9534    | 10000    | 0.0974        | 0.5434    | 0.3934      |
| 13.0829    | 10100    | 0.0928        | -         | -           |
| 13.2124    | 10200    | 0.1266        | -         | -           |
| 13.3420    | 10300    | 0.0964        | -         | -           |
| 13.4715    | 10400    | 0.1007        | -         | -           |
| 13.6010    | 10500    | 0.112         | 0.5789    | 0.3893      |
| 13.7306    | 10600    | 0.1699        | -         | -           |
| 13.8601    | 10700    | 0.1084        | -         | -           |
| 13.9896    | 10800    | 0.0967        | -         | -           |
| 14.1192    | 10900    | 0.0856        | -         | -           |
| 14.2487    | 11000    | 0.1142        | 0.5252    | 0.3933      |
| 14.3782    | 11100    | 0.0891        | -         | -           |
| 14.5078    | 11200    | 0.0911        | -         | -           |
| 14.6373    | 11300    | 0.1128        | -         | -           |
| 14.7668    | 11400    | 0.1686        | -         | -           |
| 14.8964    | 11500    | 0.0874        | 0.5874    | 0.3945      |
| 15.0259    | 11600    | 0.0909        | -         | -           |
| 15.1554    | 11700    | 0.0778        | -         | -           |
| 15.2850    | 11800    | 0.1055        | -         | -           |
| 15.4145    | 11900    | 0.0872        | -         | -           |
| 15.5440    | 12000    | 0.0884        | 0.5894    | 0.3934      |
| 15.6736    | 12100    | 0.1101        | -         | -           |
| 15.8031    | 12200    | 0.1354        | -         | -           |
| 15.9326    | 12300    | 0.0762        | -         | -           |
| 16.0622    | 12400    | 0.0782        | -         | -           |
| 16.1917    | 12500    | 0.0936        | 0.5589    | 0.3919      |
| 16.3212    | 12600    | 0.072         | -         | -           |
| 16.4508    | 12700    | 0.0806        | -         | -           |
| 16.5803    | 12800    | 0.0929        | -         | -           |
| 16.7098    | 12900    | 0.1215        | -         | -           |
| 16.8394    | 13000    | 0.1039        | 0.6025    | 0.3926      |
| 16.9689    | 13100    | 0.0738        | -         | -           |
| 17.0984    | 13200    | 0.0651        | -         | -           |
| 17.2280    | 13300    | 0.0943        | -         | -           |
| 17.3575    | 13400    | 0.0678        | -         | -           |
| 17.4870    | 13500    | 0.077         | 0.6002    | 0.3941      |
| 17.6166    | 13600    | 0.0839        | -         | -           |
| 17.7461    | 13700    | 0.1268        | -         | -           |
| 17.8756    | 13800    | 0.0764        | -         | -           |
| 18.0052    | 13900    | 0.0686        | -         | -           |
| 18.1347    | 14000    | 0.0697        | 0.5898    | 0.3913      |
| 18.2642    | 14100    | 0.0871        | -         | -           |
| 18.3938    | 14200    | 0.0699        | -         | -           |
| 18.5233    | 14300    | 0.0611        | -         | -           |
| 18.6528    | 14400    | 0.0872        | -         | -           |
| 18.7824    | 14500    | 0.1281        | 0.6087    | 0.3927      |
| 18.9119    | 14600    | 0.0583        | -         | -           |
| 19.0415    | 14700    | 0.0658        | -         | -           |
| 19.1710    | 14800    | 0.0595        | -         | -           |
| 19.3005    | 14900    | 0.0816        | -         | -           |
| 19.4301    | 15000    | 0.0699        | 0.6078    | 0.3965      |
| 19.5596    | 15100    | 0.0729        | -         | -           |
| 19.6891    | 15200    | 0.0908        | -         | -           |
| 19.8187    | 15300    | 0.0978        | -         | -           |
| 19.9482    | 15400    | 0.0585        | -         | -           |
| 20.0777    | 15500    | 0.0557        | 0.5861    | 0.3925      |
| 20.2073    | 15600    | 0.0787        | -         | -           |
| 20.3368    | 15700    | 0.061         | -         | -           |
| 20.4663    | 15800    | 0.0638        | -         | -           |
| 20.5959    | 15900    | 0.0656        | -         | -           |
| 20.7254    | 16000    | 0.1003        | 0.6032    | 0.3923      |
| 20.8549    | 16100    | 0.0718        | -         | -           |
| 20.9845    | 16200    | 0.0625        | -         | -           |
| 21.1140    | 16300    | 0.0532        | -         | -           |
| 21.2435    | 16400    | 0.0739        | -         | -           |
| 21.3731    | 16500    | 0.0552        | 0.6080    | 0.3942      |
| 21.5026    | 16600    | 0.0588        | -         | -           |
| 21.6321    | 16700    | 0.0716        | -         | -           |
| 21.7617    | 16800    | 0.1078        | -         | -           |
| 21.8912    | 16900    | 0.0559        | -         | -           |
| 22.0207    | 17000    | 0.0596        | 0.6044    | 0.3922      |
| 22.1503    | 17100    | 0.0512        | -         | -           |
| 22.2798    | 17200    | 0.0716        | -         | -           |
| 22.4093    | 17300    | 0.0574        | -         | -           |
| 22.5389    | 17400    | 0.058         | -         | -           |
| 22.6684    | 17500    | 0.07          | 0.6117    | 0.3942      |
| 22.7979    | 17600    | 0.0965        | -         | -           |
| 22.9275    | 17700    | 0.0507        | -         | -           |
| 23.0570    | 17800    | 0.0498        | -         | -           |
| 23.1865    | 17900    | 0.0524        | -         | -           |
| 23.3161    | 18000    | 0.0656        | 0.5936    | 0.3936      |
| 23.4456    | 18100    | 0.057         | -         | -           |
| 23.5751    | 18200    | 0.0619        | -         | -           |
| 23.7047    | 18300    | 0.0785        | -         | -           |
| 23.8342    | 18400    | 0.0729        | -         | -           |
| 23.9637    | 18500    | 0.0541        | 0.6174    | 0.3979      |
| 24.0933    | 18600    | 0.0456        | -         | -           |
| 24.2228    | 18700    | 0.0696        | -         | -           |
| 24.3523    | 18800    | 0.048         | -         | -           |
| 24.4819    | 18900    | 0.0547        | -         | -           |
| 24.6114    | 19000    | 0.0553        | 0.6146    | 0.3962      |
| 24.7409    | 19100    | 0.0936        | -         | -           |
| 24.8705    | 19200    | 0.0579        | -         | -           |
| 25.0       | 19300    | 0.0498        | 0.5290    | 0.3963      |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->