File size: 49,798 Bytes
ddf9470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:98928
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Abnormal wakefulness, loss of self-awareness, involuntary trance
sentences:
- 'See also: Neonatal lupus erythematosus'
- 'Scalp-ear-nipple syndrome, as its name suggests, is a condition characterized
by abnormalities of the scalp, ears, and nipples. Less frequently, affected individuals
have problems affecting other parts of the body. The features of this disorder
can vary even within the same family.
Babies with scalp-ear-nipple syndrome are born with a condition called aplasia
cutis congenita, which involves patchy abnormal areas (lesions) on the scalp.
These lesions are firm, raised, hairless nodules that resemble open wounds or
ulcers at birth, but that heal during childhood.
The external ears of people with scalp-ear-nipple syndrome may be small, cup-shaped,
folded over, or otherwise mildly misshapen. Hearing is generally normal. Affected
individuals also have nipples that are underdeveloped (hypothelia) or absent (athelia).
In some cases the underlying breast tissue is absent as well (amastia).'
- "Abnormal state of wakefulness or altered state of consciousness\n\nFor other\
\ uses, see Trance (disambiguation).\n\nThis article needs additional citations\
\ for verification. Please help improve this article by adding citations to reliable\
\ sources. Unsourced material may be challenged and removed. \nFind sources:\
\ \"Trance\" – news · newspapers · books · scholar · JSTOR (August 2010) (Learn\
\ how and when to remove this template message) \n \nDissociative trance \n\
The Oracle at Delphi was famous for her divinatory trances throughout the ancient\
\ Mediterranean world. Oil painting, John Collier, 1891 \nSpecialtyPsychiatry\
\ \n \nTrance is an abnormal state of wakefulness in which a person is not self-aware\
\ and is either altogether unresponsive to external stimuli (but nevertheless\
\ capable of pursuing and realizing an aim) or is selectively responsive in following\
\ the directions of the person (if any) who has induced the trance. Trance states\
\ may occur involuntarily and unbidden."
- source_sentence: respiratory infections, recurrent infections, primary immunodeficiency
sentences:
- 'A number sign (#) is used with this entry because of evidence that autosomal
dominant common variable immunodeficiency-12 (CVID12) is caused by heterozygous
mutation in the NFKB1 gene (164011) on chromosome 4q24.
Description
Common variable immunodeficiency-12 is an autosomal dominant primary immunodeficiency
characterized by recurrent infections, mainly respiratory, associated with hypogammaglobulinemia.
The disorder shows a highly variable age at onset and highly variable disease
severity, even within the same family. Some patients have features of autoimmunity
(summary by Fliegauf et al., 2015).
For a general description and a discussion of genetic heterogeneity of common
variable immunodeficiency, see CVID1 (607594).
Clinical Features'
- Kyasanura forest disease (KFD), caused by the KFD virus, is an arbovirus characterized
by an initial fever, headache and myalgia that can progress to a hemorrhagic disease
and that in some cases is followed by a second phase characterized by neurological
manifestations.
- 'A number sign (#) is used with this entry because of evidence that X-linked syndromic
mental retardation-33 (MRXS33) is caused by mutation in the TAF1 gene (313650)
on chromosome Xq13.
Description
X-linked syndromic mental retardation-33 is an X-linked recessive neurodevelopmental
disorder characterized by delayed psychomotor development, intellectual disability,
and characteristic facial features (summary by O''Rawe et al., 2015).
Clinical Features'
- source_sentence: Common variable immunodeficiency, recurrent infections, impaired
antibody production
sentences:
- 'A number sign (#) is used with this entry because this form of common variable
immunodeficiency (CVID), referred to here as CVID5, is caused by homozygous mutation
in the CD20 gene (MS4A1; 112210) on chromosome 11q13.
For a general description and a discussion of genetic heterogeneity of common
variable immunodeficiency, see CVID1 (607594).
Clinical Features'
- 'A number sign (#) is used with this entry because of evidence that the Stanescu
type of spondyloepiphyseal dysplasia (SEDSTN) is caused by heterozygous mutation
in the COL2A1 gene (120140) on chromosome 12q13.
Description'
- '## Description
Macular dystrophies are inherited retinal dystrophies in which various forms of
deposits, pigmentary changes, and atrophic lesions are observed in the macula
lutea, the cone-rich region of the central retina. Vitelliform macular dystrophies
(VMDs) form a subset of macular dystrophies characterized by round yellow deposits,
usually at the center of the macula and containing lipofuscin, a chemically heterogeneous
pigment visualized by autofluorescence imaging of the fundus (summary by Manes
et al., 2013). In contrast to typical VMD (see 153700), patients with atypical
VMD may exhibit normal electrooculography, even when severe loss of vision is
present, and fluorescein angiography is thus the most reliable test for identifying
affected individuals (Hittner et al., 1984).
### Genetic Heterogeneity of Vitelliform Macular Dystrophy'
- source_sentence: Growth retardation, hearing impairment, joint hypermobility, sacral
caudal remnant
sentences:
- 'A number sign (#) is used with this entry because Bruck syndrome-2 (BRKS2) is
caused by homozygous mutation in the PLOD2 gene (601865), which encodes telopeptide
lysyl hydroxylase, on chromosome 3q24.
For a phenotypic description and a discussion of genetic heterogeneity of Bruck
syndrome, see Bruck syndrome-1 (259450).
Clinical Features
Ha-Vinh et al. (2004) described a child with Bruck syndrome who was the offspring
of healthy nonconsanguineous Turkish parents. At birth, pterygia were present
at the left elbow and at both knees, and extension of these joints was limited.
Contractures were also present at the wrists, and there were bilateral clubfeet.
Bilateral inguinal hernias were present. A fracture of the left arm was recognized
immediately after birth, and the boy had 2 more fractures in the first 3 months
of life. His urine contained high levels of hydroxyproline but low levels of collagen
crosslinks degradation products.'
- '## Summary
### Clinical characteristics.
Thrombocytopenia absent radius (TAR) syndrome is characterized by bilateral absence
of the radii with the presence of both thumbs and thrombocytopenia (<50 platelets/nL)
that is generally transient. Thrombocytopenia may be congenital or may develop
within the first few weeks to months of life; in general, thrombocytopenic episodes
decrease with age. Cow''s milk allergy is common and can be associated with exacerbation
of thrombocytopenia. Other anomalies of the skeleton (upper and lower limbs, ribs,
and vertebrae), heart, and genitourinary system (renal anomalies and agenesis
of uterus, cervix, and upper part of the vagina) can occur.
### Diagnosis/testing.'
- A rare multiple congenital anomalies/dysmorphic syndrome characterized by global
developmental delay, intellectual disability, growth retardation, hearing impairment,
characteristic facial dysmorphology (including prominent supraorbital ridges,
downslanting palpebral fissures, deep-set eyes, long face, sagging cheeks, anteverted
nares, and pointed chin), generalized hypotonia, joint hypermobility, gluteal
crease with sacral caudal remnant and sacral dimple, and variable neurological
features. Various ophthalmic, cutaneous, musculoskeletal, gastrointestinal, and
cardiovascular anomalies have also been described.
- source_sentence: ear malformations, nipple abnormalities, dental anomalies
sentences:
- "This article is an orphan, as no other articles link to it. Please introduce\
\ links to this page from related articles; try the Find link tool for suggestions.\
\ (July 2016) \n \nInguinal lymphadenopathy \nInguinal lymphadenopathy \n\
\ \nInguinal lymphadenopathy causes swollen lymph nodes in the groin area. It\
\ can be a symptom of infective or neoplastic processes. Infective aetiologies\
\ include Tuberculosis, HIV, non-specific or reactive lymphadenopathy to recent\
\ lower limb infection or groin infections. Another notable infectious cause is\
\ Lymphogranuloma venereum, which is a sexually transmitted infection of the lymphatic\
\ system. Neoplastic aetiologies include lymphoma, leukaemia and metastatic disease\
\ from primary tumours in the lower limb, external genitalia or perianal region\
\ and melanoma.\n\n## References[edit]\n\n * Ferrer R (October 1998). \"Lymphadenopathy:\
\ differential diagnosis and evaluation\". Am Fam Physician. 58 (6): 1313–20.\
\ PMID 9803196.\n\n## Further reading[edit]"
- 'A number sign (#) is used with this entry because scalp-ear-nipple syndrome (SENS)
is caused by heterozygous mutation in the KCTD1 gene (613420) on chromosome 18q11.
Description
Scalp-ear-nipple syndrome is characterized by aplasia cutis congenita of the scalp,
breast anomalies that range from hypothelia or athelia to amastia, and minor anomalies
of the external ears. Less frequent clinical characteristics include nail dystrophy,
dental anomalies, cutaneous syndactyly of the digits, and renal malformations.
Penetrance appears to be high, although there is substantial variable expressivity
within families (Marneros et al., 2013).
Clinical Features'
- Familial multiple meningioma is a rare, benign neoplasm of the central nervous
system characterized by the development of multiple or, rarely, solitary meningiomas
in two or more blood relatives, without other apparent syndromic manifestations.
Depending on the localization, growth rate and size of the tumors, patients can
present with subtle, gradually worsening or abrupt and severe neurological compromise
or can be completely asymptomatic.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.18070477009024494
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5426514825956167
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7380747743876236
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8160721959604641
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18070477009024494
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1808838275318722
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1476149548775247
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08160721959604642
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18070477009024494
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5426514825956167
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7380747743876236
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8160721959604641
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.49469594615283
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.39074511770043246
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3952600557331103
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.18274602492479589
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5412548345509239
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7430167597765364
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8167168027503223
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18274602492479589
name: Dot Precision@1
- type: dot_precision@3
value: 0.18041827818364134
name: Dot Precision@3
- type: dot_precision@5
value: 0.1486033519553073
name: Dot Precision@5
- type: dot_precision@10
value: 0.08167168027503223
name: Dot Precision@10
- type: dot_recall@1
value: 0.18274602492479589
name: Dot Recall@1
- type: dot_recall@3
value: 0.5412548345509239
name: Dot Recall@3
- type: dot_recall@5
value: 0.7430167597765364
name: Dot Recall@5
- type: dot_recall@10
value: 0.8167168027503223
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4956715454485796
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.391808804169147
name: Dot Mrr@10
- type: dot_map@100
value: 0.39626188359327835
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'ear malformations, nipple abnormalities, dental anomalies',
'A number sign (#) is used with this entry because scalp-ear-nipple syndrome (SENS) is caused by heterozygous mutation in the KCTD1 gene (613420) on chromosome 18q11.\n\nDescription\n\nScalp-ear-nipple syndrome is characterized by aplasia cutis congenita of the scalp, breast anomalies that range from hypothelia or athelia to amastia, and minor anomalies of the external ears. Less frequent clinical characteristics include nail dystrophy, dental anomalies, cutaneous syndactyly of the digits, and renal malformations. Penetrance appears to be high, although there is substantial variable expressivity within families (Marneros et al., 2013).\n\nClinical Features',
'This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2016) \n \nInguinal lymphadenopathy \nInguinal lymphadenopathy \n \nInguinal lymphadenopathy causes swollen lymph nodes in the groin area. It can be a symptom of infective or neoplastic processes. Infective aetiologies include Tuberculosis, HIV, non-specific or reactive lymphadenopathy to recent lower limb infection or groin infections. Another notable infectious cause is Lymphogranuloma venereum, which is a sexually transmitted infection of the lymphatic system. Neoplastic aetiologies include lymphoma, leukaemia and metastatic disease from primary tumours in the lower limb, external genitalia or perianal region and melanoma.\n\n## References[edit]\n\n * Ferrer R (October 1998). "Lymphadenopathy: differential diagnosis and evaluation". Am Fam Physician. 58 (6): 1313–20. PMID 9803196.\n\n## Further reading[edit]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1807 |
| cosine_accuracy@3 | 0.5427 |
| cosine_accuracy@5 | 0.7381 |
| cosine_accuracy@10 | 0.8161 |
| cosine_precision@1 | 0.1807 |
| cosine_precision@3 | 0.1809 |
| cosine_precision@5 | 0.1476 |
| cosine_precision@10 | 0.0816 |
| cosine_recall@1 | 0.1807 |
| cosine_recall@3 | 0.5427 |
| cosine_recall@5 | 0.7381 |
| cosine_recall@10 | 0.8161 |
| cosine_ndcg@10 | 0.4947 |
| cosine_mrr@10 | 0.3907 |
| cosine_map@100 | 0.3953 |
| dot_accuracy@1 | 0.1827 |
| dot_accuracy@3 | 0.5413 |
| dot_accuracy@5 | 0.743 |
| dot_accuracy@10 | 0.8167 |
| dot_precision@1 | 0.1827 |
| dot_precision@3 | 0.1804 |
| dot_precision@5 | 0.1486 |
| dot_precision@10 | 0.0817 |
| dot_recall@1 | 0.1827 |
| dot_recall@3 | 0.5413 |
| dot_recall@5 | 0.743 |
| dot_recall@10 | 0.8167 |
| dot_ndcg@10 | 0.4957 |
| dot_mrr@10 | 0.3918 |
| **dot_map@100** | **0.3963** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 98,928 training samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
| | queries | chunks |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.4 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 159.93 tokens</li><li>max: 334 tokens</li></ul> |
* Samples:
| queries | chunks |
|:-------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>fever, malaise, headaches, lymphadenopathy</code> | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
| <code>rash, papulovesicular, generalized, constitutional symptoms</code> | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
| <code>myalgia, diaphoresis, nausea, vomiting</code> | <code>A rare, acquired, self-limiting, infectious disease due to the mite-borne bacteria Rickettsia akari characterized by an asymptomatic, 0.5 to 2 cm in diameter papulovesicle that typically ulcerates and forms an eschar, followed by a generalized papulovesicular rash associating variable constitutional symptoms, such as localized lymphadenopathy, fever, malaise, and headaches. Additonal symptoms may include diaphoresis, myalgia and, less frequently, rhinorrhea, pharyngitis, nausea, vomiting, splenomegaly, conjunctival hyperemia, and abdominal pain. Systemic symtoms resolve within 6-10 days.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 1,
"similarity_fct": "dot_score"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 9,308 evaluation samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
| | queries | chunks |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.8 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 166.19 tokens</li><li>max: 299 tokens</li></ul> |
* Samples:
| queries | chunks |
|:-------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>facial features, overgrowth, learning disabilities, delayed development</code> | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
| <code>long face, high forehead, flushed cheeks, small chin, down-slanting palpebral fissures</code> | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
| <code>intellectual disability, behavioral problems, speech and language difficulties, hypotonia</code> | <code>Sotos syndrome is a condition characterized mainly by distinctive facial features; overgrowth in childhood; and learning disabilities or delayed development. Facial features may include a long, narrow face; a high forehead; flushed (reddened) cheeks; a small, pointed chin; and down-slanting palpebral fissures. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers and have a large head. Other signs and symptoms may include intellectual disability; behavioral problems; problems with speech and language; and/or weak muscle tone (hypotonia). Sotos syndrome is usually caused by a mutation in the NSD1 gene and is inherited in an autosomal dominant manner. About 95% of cases are due to a new mutation in the affected person and occur sporadically (are not inherited).</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 1,
"similarity_fct": "dot_score"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 25
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | dot_map@100 |
|:----------:|:--------:|:-------------:|:---------:|:-----------:|
| 0 | 0 | - | 1.8701 | 0.2095 |
| 0.1295 | 100 | 1.5494 | - | - |
| 0.2591 | 200 | 0.9993 | - | - |
| 0.3886 | 300 | 0.7225 | - | - |
| 0.5181 | 400 | 0.6533 | - | - |
| 0.6477 | 500 | 0.6618 | 0.5939 | 0.3722 |
| 0.7772 | 600 | 0.6454 | - | - |
| 0.9067 | 700 | 0.5568 | - | - |
| 1.0363 | 800 | 0.5435 | - | - |
| 1.1658 | 900 | 0.499 | - | - |
| 1.2953 | 1000 | 0.5386 | 0.4768 | 0.3842 |
| 1.4249 | 1100 | 0.5077 | - | - |
| 1.5544 | 1200 | 0.4929 | - | - |
| 1.6839 | 1300 | 0.5194 | - | - |
| 1.8135 | 1400 | 0.5157 | - | - |
| 1.9430 | 1500 | 0.4337 | 0.4455 | 0.3894 |
| 2.0725 | 1600 | 0.4373 | - | - |
| 2.2021 | 1700 | 0.4569 | - | - |
| 2.3316 | 1800 | 0.4084 | - | - |
| 2.4611 | 1900 | 0.42 | - | - |
| 2.5907 | 2000 | 0.4112 | 0.4578 | 0.3886 |
| 2.7202 | 2100 | 0.4498 | - | - |
| 2.8497 | 2200 | 0.415 | - | - |
| 2.9793 | 2300 | 0.3734 | - | - |
| 3.1088 | 2400 | 0.3359 | - | - |
| 3.2383 | 2500 | 0.3923 | 0.4339 | 0.3929 |
| 3.3679 | 2600 | 0.3345 | - | - |
| 3.4974 | 2700 | 0.3324 | - | - |
| 3.6269 | 2800 | 0.3574 | - | - |
| 3.7565 | 2900 | 0.4078 | - | - |
| 3.8860 | 3000 | 0.3221 | 0.4293 | 0.3904 |
| 4.0155 | 3100 | 0.2895 | - | - |
| 4.1451 | 3200 | 0.2821 | - | - |
| 4.2746 | 3300 | 0.3192 | - | - |
| 4.4041 | 3400 | 0.28 | - | - |
| 4.5337 | 3500 | 0.2716 | 0.4486 | 0.3885 |
| 4.6632 | 3600 | 0.3147 | - | - |
| 4.7927 | 3700 | 0.3565 | - | - |
| 4.9223 | 3800 | 0.2465 | - | - |
| 5.0518 | 3900 | 0.2436 | - | - |
| 5.1813 | 4000 | 0.2297 | 0.4486 | 0.3917 |
| 5.3109 | 4100 | 0.2538 | - | - |
| 5.4404 | 4200 | 0.2448 | - | - |
| 5.5699 | 4300 | 0.2433 | - | - |
| 5.6995 | 4400 | 0.3017 | - | - |
| 5.8290 | 4500 | 0.2958 | 0.4737 | 0.3934 |
| 5.9585 | 4600 | 0.2142 | - | - |
| 6.0881 | 4700 | 0.1939 | - | - |
| 6.2176 | 4800 | 0.2449 | - | - |
| 6.3472 | 4900 | 0.2026 | - | - |
| 6.4767 | 5000 | 0.2006 | 0.4901 | 0.3895 |
| 6.6062 | 5100 | 0.2118 | - | - |
| 6.7358 | 5200 | 0.3064 | - | - |
| 6.8653 | 5300 | 0.2276 | - | - |
| 6.9948 | 5400 | 0.1809 | - | - |
| 7.1244 | 5500 | 0.1782 | 0.4992 | 0.3915 |
| 7.2539 | 5600 | 0.2211 | - | - |
| 7.3834 | 5700 | 0.1728 | - | - |
| 7.5130 | 5800 | 0.1651 | - | - |
| 7.6425 | 5900 | 0.2158 | - | - |
| 7.7720 | 6000 | 0.2864 | 0.5113 | 0.3892 |
| 7.9016 | 6100 | 0.179 | - | - |
| 8.0311 | 6200 | 0.1677 | - | - |
| 8.1606 | 6300 | 0.1517 | - | - |
| 8.2902 | 6400 | 0.1851 | - | - |
| 8.4197 | 6500 | 0.1646 | 0.5030 | 0.3933 |
| 8.5492 | 6600 | 0.1608 | - | - |
| 8.6788 | 6700 | 0.217 | - | - |
| 8.8083 | 6800 | 0.2357 | - | - |
| 8.9378 | 6900 | 0.1404 | - | - |
| 9.0674 | 7000 | 0.1465 | 0.5153 | 0.3877 |
| 9.1969 | 7100 | 0.1791 | - | - |
| 9.3264 | 7200 | 0.1261 | - | - |
| 9.4560 | 7300 | 0.1406 | - | - |
| 9.5855 | 7400 | 0.1626 | - | - |
| 9.7150 | 7500 | 0.223 | 0.5326 | 0.3939 |
| 9.8446 | 7600 | 0.1806 | - | - |
| 9.9741 | 7700 | 0.1289 | - | - |
| 10.1036 | 7800 | 0.1269 | - | - |
| 10.2332 | 7900 | 0.1609 | - | - |
| 10.3627 | 8000 | 0.1279 | 0.5113 | 0.3933 |
| 10.4922 | 8100 | 0.1264 | - | - |
| 10.6218 | 8200 | 0.1453 | - | - |
| 10.7513 | 8300 | 0.2227 | - | - |
| 10.8808 | 8400 | 0.1314 | - | - |
| 11.0104 | 8500 | 0.1192 | 0.5444 | 0.3925 |
| 11.1399 | 8600 | 0.1164 | - | - |
| 11.2694 | 8700 | 0.1418 | - | - |
| 11.3990 | 8800 | 0.1202 | - | - |
| 11.5285 | 8900 | 0.1152 | - | - |
| **11.658** | **9000** | **0.1454** | **0.529** | **0.3963** |
| 11.7876 | 9100 | 0.1952 | - | - |
| 11.9171 | 9200 | 0.1079 | - | - |
| 12.0466 | 9300 | 0.1139 | - | - |
| 12.1762 | 9400 | 0.1067 | - | - |
| 12.3057 | 9500 | 0.1219 | 0.5257 | 0.3938 |
| 12.4352 | 9600 | 0.119 | - | - |
| 12.5648 | 9700 | 0.1195 | - | - |
| 12.6943 | 9800 | 0.158 | - | - |
| 12.8238 | 9900 | 0.156 | - | - |
| 12.9534 | 10000 | 0.0974 | 0.5434 | 0.3934 |
| 13.0829 | 10100 | 0.0928 | - | - |
| 13.2124 | 10200 | 0.1266 | - | - |
| 13.3420 | 10300 | 0.0964 | - | - |
| 13.4715 | 10400 | 0.1007 | - | - |
| 13.6010 | 10500 | 0.112 | 0.5789 | 0.3893 |
| 13.7306 | 10600 | 0.1699 | - | - |
| 13.8601 | 10700 | 0.1084 | - | - |
| 13.9896 | 10800 | 0.0967 | - | - |
| 14.1192 | 10900 | 0.0856 | - | - |
| 14.2487 | 11000 | 0.1142 | 0.5252 | 0.3933 |
| 14.3782 | 11100 | 0.0891 | - | - |
| 14.5078 | 11200 | 0.0911 | - | - |
| 14.6373 | 11300 | 0.1128 | - | - |
| 14.7668 | 11400 | 0.1686 | - | - |
| 14.8964 | 11500 | 0.0874 | 0.5874 | 0.3945 |
| 15.0259 | 11600 | 0.0909 | - | - |
| 15.1554 | 11700 | 0.0778 | - | - |
| 15.2850 | 11800 | 0.1055 | - | - |
| 15.4145 | 11900 | 0.0872 | - | - |
| 15.5440 | 12000 | 0.0884 | 0.5894 | 0.3934 |
| 15.6736 | 12100 | 0.1101 | - | - |
| 15.8031 | 12200 | 0.1354 | - | - |
| 15.9326 | 12300 | 0.0762 | - | - |
| 16.0622 | 12400 | 0.0782 | - | - |
| 16.1917 | 12500 | 0.0936 | 0.5589 | 0.3919 |
| 16.3212 | 12600 | 0.072 | - | - |
| 16.4508 | 12700 | 0.0806 | - | - |
| 16.5803 | 12800 | 0.0929 | - | - |
| 16.7098 | 12900 | 0.1215 | - | - |
| 16.8394 | 13000 | 0.1039 | 0.6025 | 0.3926 |
| 16.9689 | 13100 | 0.0738 | - | - |
| 17.0984 | 13200 | 0.0651 | - | - |
| 17.2280 | 13300 | 0.0943 | - | - |
| 17.3575 | 13400 | 0.0678 | - | - |
| 17.4870 | 13500 | 0.077 | 0.6002 | 0.3941 |
| 17.6166 | 13600 | 0.0839 | - | - |
| 17.7461 | 13700 | 0.1268 | - | - |
| 17.8756 | 13800 | 0.0764 | - | - |
| 18.0052 | 13900 | 0.0686 | - | - |
| 18.1347 | 14000 | 0.0697 | 0.5898 | 0.3913 |
| 18.2642 | 14100 | 0.0871 | - | - |
| 18.3938 | 14200 | 0.0699 | - | - |
| 18.5233 | 14300 | 0.0611 | - | - |
| 18.6528 | 14400 | 0.0872 | - | - |
| 18.7824 | 14500 | 0.1281 | 0.6087 | 0.3927 |
| 18.9119 | 14600 | 0.0583 | - | - |
| 19.0415 | 14700 | 0.0658 | - | - |
| 19.1710 | 14800 | 0.0595 | - | - |
| 19.3005 | 14900 | 0.0816 | - | - |
| 19.4301 | 15000 | 0.0699 | 0.6078 | 0.3965 |
| 19.5596 | 15100 | 0.0729 | - | - |
| 19.6891 | 15200 | 0.0908 | - | - |
| 19.8187 | 15300 | 0.0978 | - | - |
| 19.9482 | 15400 | 0.0585 | - | - |
| 20.0777 | 15500 | 0.0557 | 0.5861 | 0.3925 |
| 20.2073 | 15600 | 0.0787 | - | - |
| 20.3368 | 15700 | 0.061 | - | - |
| 20.4663 | 15800 | 0.0638 | - | - |
| 20.5959 | 15900 | 0.0656 | - | - |
| 20.7254 | 16000 | 0.1003 | 0.6032 | 0.3923 |
| 20.8549 | 16100 | 0.0718 | - | - |
| 20.9845 | 16200 | 0.0625 | - | - |
| 21.1140 | 16300 | 0.0532 | - | - |
| 21.2435 | 16400 | 0.0739 | - | - |
| 21.3731 | 16500 | 0.0552 | 0.6080 | 0.3942 |
| 21.5026 | 16600 | 0.0588 | - | - |
| 21.6321 | 16700 | 0.0716 | - | - |
| 21.7617 | 16800 | 0.1078 | - | - |
| 21.8912 | 16900 | 0.0559 | - | - |
| 22.0207 | 17000 | 0.0596 | 0.6044 | 0.3922 |
| 22.1503 | 17100 | 0.0512 | - | - |
| 22.2798 | 17200 | 0.0716 | - | - |
| 22.4093 | 17300 | 0.0574 | - | - |
| 22.5389 | 17400 | 0.058 | - | - |
| 22.6684 | 17500 | 0.07 | 0.6117 | 0.3942 |
| 22.7979 | 17600 | 0.0965 | - | - |
| 22.9275 | 17700 | 0.0507 | - | - |
| 23.0570 | 17800 | 0.0498 | - | - |
| 23.1865 | 17900 | 0.0524 | - | - |
| 23.3161 | 18000 | 0.0656 | 0.5936 | 0.3936 |
| 23.4456 | 18100 | 0.057 | - | - |
| 23.5751 | 18200 | 0.0619 | - | - |
| 23.7047 | 18300 | 0.0785 | - | - |
| 23.8342 | 18400 | 0.0729 | - | - |
| 23.9637 | 18500 | 0.0541 | 0.6174 | 0.3979 |
| 24.0933 | 18600 | 0.0456 | - | - |
| 24.2228 | 18700 | 0.0696 | - | - |
| 24.3523 | 18800 | 0.048 | - | - |
| 24.4819 | 18900 | 0.0547 | - | - |
| 24.6114 | 19000 | 0.0553 | 0.6146 | 0.3962 |
| 24.7409 | 19100 | 0.0936 | - | - |
| 24.8705 | 19200 | 0.0579 | - | - |
| 25.0 | 19300 | 0.0498 | 0.5290 | 0.3963 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |