antonovmaxim commited on
Commit
3e12262
1 Parent(s): 2d16b38

Загрузка обученного агента PPO LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.88 +/- 14.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d39297df130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d39297df1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d39297df250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d39297df2e0>", "_build": "<function ActorCriticPolicy._build at 0x7d39297df370>", "forward": "<function ActorCriticPolicy.forward at 0x7d39297df400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d39297df490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d39297df520>", "_predict": "<function ActorCriticPolicy._predict at 0x7d39297df5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d39297df640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d39297df6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d39297df760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3929786cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722884538857099095, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOyBD6krhS7rlCGvqFHKb4LJBe9OlcHPwAAgD8AAAAAAG6vPOECoLqFPma2zRGdsbToBTvtroU1AACAPwAAgD86xhq+lPb3O59rmD63Shm7eV+pvRAIbD4AAIA/AACAP1NbSj5UYtG8uZcBO0kbfbm1Kja+9YYwugAAgD8AAIA/oAlCPnTYzryw3tc4IPEVtytTQL5KiBK4AACAPwAAgD9tRDg+aVNovJJN3DtvTCW6ogjQverXBbsAAIA/AACAPzMpULwfLLg/Yw3cvd8vML0rlq28Qi6yvAAAAAAAAAAAZixjvnvqxLxa0gy6MNRRuI3mKz4HVzE5AACAPwAAgD/mKb69FDicuittJTRE0TcwwA8TOgGRn7MAAAAAAACAP2YiQj60NMC8KkgVPARwp7r8hiy+RXaBuwAAgD8AAIA/04dAPmLAGD4DYmu+NSOgvmbZnbzkmBC8AAAAAAAAAACO/5++cU4VP+0fvjyaCuS+aEf6vehG+DwAAAAAAAAAABPAhr5UlhU+CpRmPnUfOb4ILx68rJAkPQAAAAAAAAAA5gMpPq/7nT+i0wo/tDIHv31RPD5sWSc+AAAAAAAAAACavji+NuVuvJcEBbttHh+5HNLLPTIBJzoAAIA/AACAPw3+qr5OeL4+0GtvPlTdrL4RSpy9tsWKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFci22G7BiMAWyUS9iMAXSUR0CV8y6uGKyfdX2UKGgGR0Btg+C5EtulaAdLxWgIR0CV80gaWHDadX2UKGgGR0BiczOC5EtvaAdN6ANoCEdAlfQByCFsYXV9lChoBkdAcHgBzFMqSWgHS95oCEdAlfRDTfBN23V9lChoBkdAcHeCDEm6XmgHS9VoCEdAlfT0I1LrX3V9lChoBkdAb2IvW6K+BmgHTS4BaAhHQJX1vK9wm3R1fZQoaAZHQHIMPb0voNdoB0vOaAhHQJX10JzDGcZ1fZQoaAZHQG9nQokRjBloB0vdaAhHQJX3FD9fkWB1fZQoaAZHQHCU3SfDk2hoB0vnaAhHQJX3RtBOYY11fZQoaAZHQHCBMIJJGvxoB0vmaAhHQJX4q7g88tB1fZQoaAZHQHDJIU8FINFoB0vkaAhHQJX5vYQJ5Vx1fZQoaAZHQHHutqDbrTpoB00mAWgIR0CV+ppJPIn0dX2UKGgGR0BxjXPJJXhgaAdNAwFoCEdAlfqwMc6vJXV9lChoBkdAciyRRdhRZWgHTQYBaAhHQJX6rQpnYg91fZQoaAZHQHDqY0ZWJadoB0vvaAhHQJX6/QQcxTN1fZQoaAZHQGO0PEbYK6ZoB03oA2gIR0CV+4tTkyULdX2UKGgGR0Bw4C4I8hcJaAdL9mgIR0CV/EGUwBYFdX2UKGgGR0BxLOB06o2oaAdNGwFoCEdAlfyTzd1uBXV9lChoBkdAcMIWQOnVG2gHS+5oCEdAlfz+qioKlnV9lChoBkdAcYCsenyd4GgHS8toCEdAlf1cf3evZHV9lChoBkdAcWrvCuU2UGgHS/9oCEdAlf1nN9ph4XV9lChoBkdAcpMWvr4WUWgHS+FoCEdAlf4USVW0Z3V9lChoBkdAb1Kh1Tzd12gHS+BoCEdAlgA2I9C/oXV9lChoBkdAbp8rI5o4/GgHS9BoCEdAlgB7G3nZCnV9lChoBkdAbrSzv7WNFWgHS89oCEdAlgCCmZVn3HV9lChoBkdAb3mkona37WgHS9ZoCEdAlgC6DsdDIHV9lChoBkdAcbazkZJkG2gHTR4BaAhHQJYBFGy5Zr51fZQoaAZHQG9+NS619fFoB0vQaAhHQJYBWBJ7LMd1fZQoaAZHQHCXpKzzErJoB0vsaAhHQJYBmAuqWC51fZQoaAZHQHGpmzWwu/VoB0vtaAhHQJYDGpqASWZ1fZQoaAZHQHCMMj3VTaVoB0vjaAhHQJYDlYhdMTN1fZQoaAZHQEQFhhH9WIZoB0vVaAhHQJYECETQE6l1fZQoaAZHQHA9+HrQgLZoB01FAWgIR0CWBlnAIppfdX2UKGgGR0Bw2VkkKNQ1aAdLy2gIR0CWBrH7xd6cdX2UKGgGR0BxsZ7D2rXEaAdL3mgIR0CWBx6Ae7tidX2UKGgGR0Bu0rZ6D5CXaAdLyWgIR0CWB4VafSQYdX2UKGgGR0BxHgCPp6hQaAdLx2gIR0CWB9EkB0ZFdX2UKGgGR0BwALw6QvHtaAdL7WgIR0CWCCYHxBmgdX2UKGgGR0By1Aona37UaAdL32gIR0CWCUFz+3pfdX2UKGgGR0BhGNsguAZsaAdN6ANoCEdAlgnPszEaVHV9lChoBkdAb1qjKPn0TWgHS89oCEdAlguY0EX+EXV9lChoBkdAb6xVn27FsGgHS9BoCEdAlgxX/kvK2nV9lChoBkdAb0pLM9r432gHS/FoCEdAlgxlImPYF3V9lChoBkdASM+Mhouf3GgHS6poCEdAlg4rLhaTwHV9lChoBkdAcLGYB/7SA2gHS8doCEdAlg84T4+KTHV9lChoBkdAb2YweNkvsmgHS81oCEdAlhEIukDZDnV9lChoBkdAcHzlq8DjimgHS9poCEdAlhFTNt65XnV9lChoBkdAX9MQBgeA/mgHTegDaAhHQJYR1Gx2SuB1fZQoaAZHQHJ1pmdy1eBoB0vnaAhHQJYSsotthux1fZQoaAZHQG8qp++dsi1oB0vPaAhHQJYSyq2jO9p1fZQoaAZHQG8UfKp1ifBoB00EAWgIR0CWEu//vOQhdX2UKGgGR0Bg7ZzvJA+qaAdN6ANoCEdAlhPBhpg1FnV9lChoBkdAb9cnQ6ZH/mgHS+1oCEdAlhQnZ9NN8HV9lChoBkdAcR3uk1uR92gHS+5oCEdAlhV0eZG8VnV9lChoBkdAcXIPqcEvCmgHS+JoCEdAlhWWALApKHV9lChoBkdAcJ9MGorFwWgHS8poCEdAlhbEVJtix3V9lChoBkdAcHV23azu4WgHTRgBaAhHQJYXVWilBQh1fZQoaAZHQHBQvZZjhDRoB0vGaAhHQJYYF7w8W9F1fZQoaAZHQHCwOvQnhKloB0vTaAhHQJYZip3os7N1fZQoaAZHQHDQdZA6dUdoB0vRaAhHQJYZitZFG5N1fZQoaAZHQG88bp/wy7BoB00GAWgIR0CWGi4Qz1sddX2UKGgGR0BxP2VfNRm9aAdLu2gIR0CWGlHbRF7VdX2UKGgGR0BzGdLBbfP5aAdL/GgIR0CWGmP2wmmcdX2UKGgGR0ByjWq2jO9naAdLzmgIR0CWGnmwqy4XdX2UKGgGR0Bvyiqp97WvaAdL7WgIR0CWGqcNpdrwdX2UKGgGR0Bw2RkPMB6saAdL62gIR0CWHWmbb1yvdX2UKGgGR0BxHnGdZq20aAdL7mgIR0CWHaxdIGyHdX2UKGgGR0Bwg/hOxjaxaAdLwWgIR0CWHgag2606dX2UKGgGR0BfJYp6QeV+aAdN6ANoCEdAlh9YAbQ1JnV9lChoBkdAcL8z4k/r0WgHS81oCEdAliCXFLnLaHV9lChoBkdAX0X6sQumJmgHTegDaAhHQJYgppTMqz91fZQoaAZHQHLzcO9WZJFoB00PAWgIR0CWIWatLcsUdX2UKGgGR0BxLAjGDL8raAdL42gIR0CWIgh5Pdl/dX2UKGgGR0BwhhAfMfRvaAdL8mgIR0CWInghbGFSdX2UKGgGR0BxGrWQOnVHaAdL6WgIR0CWIoMJhOQAdX2UKGgGR0BzHdvFWGRFaAdNFAFoCEdAliNf9kz413V9lChoBkdAcHN3fQ8fWGgHTTkBaAhHQJYj/s0HhS91fZQoaAZHQG3WTYukDZFoB0vQaAhHQJYkcFhXr+p1fZQoaAZHQGNx/VRUFStoB03oA2gIR0CWJIJf6XSjdX2UKGgGR0BxowaUA1ejaAdNEgFoCEdAliYtkrf+CXV9lChoBkdAbnjR/mT1TWgHS9JoCEdAliclNg0CR3V9lChoBkdAcRkkEs8PnWgHS9loCEdAlidQEU0vXnV9lChoBkdAcukMmnfl62gHTQMBaAhHQJYnd3qzJIV1fZQoaAZHQG80z3qRlpZoB0vFaAhHQJYnewr1/Uh1fZQoaAZHQHAmPLLZBcBoB0vOaAhHQJYoWnJkoWp1fZQoaAZHQHCIAmReTmpoB0vPaAhHQJYpxnL7oB91fZQoaAZHQG8cTi0fHPxoB00uA2gIR0CWKhOOsDGMdX2UKGgGR0BwmVNzr/sFaAdL/WgIR0CWKkce8wpOdX2UKGgGR0Bw4+7g88s+aAdLwGgIR0CWKmKHwgDBdX2UKGgGR0BxdNF5OafBaAdLz2gIR0CWKmc+aBqcdX2UKGgGR0BxZYow22ofaAdLy2gIR0CWLauqm0mddX2UKGgGR0Bw4UahpQDWaAdL2mgIR0CWLdYKYzBRdX2UKGgGR0BxZD1VYISlaAdL0GgIR0CWLdvKEFnqdX2UKGgGR0Bw3VkGzKLbaAdLwmgIR0CWLk8PWhAXdX2UKGgGR0ByDegVXV9XaAdNFQFoCEdAli/vk/8l5XV9lChoBkdAbf9U5MlC1WgHS9RoCEdAljBkS26TXHV9lChoBkdAb58ZJCjUNWgHS81oCEdAljCzZ6D5CXV9lChoBkdAb5MWpqASWmgHS91oCEdAljFpNwiqyXV9lChoBkdAcLxVTrE9+2gHTTEBaAhHQJYz5tNzr/t1fZQoaAZHQHHf3KOktVdoB004AWgIR0CWNHs+FDfFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e26ee559a8774999795b0031a00851bef436013fe8df5d041d005d51018ec0
3
+ size 148159
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d39297df130>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d39297df1c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d39297df250>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d39297df2e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d39297df370>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d39297df400>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d39297df490>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d39297df520>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d39297df5b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d39297df640>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d39297df6d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d39297df760>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d3929786cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1722884538857099095,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOyBD6krhS7rlCGvqFHKb4LJBe9OlcHPwAAgD8AAAAAAG6vPOECoLqFPma2zRGdsbToBTvtroU1AACAPwAAgD86xhq+lPb3O59rmD63Shm7eV+pvRAIbD4AAIA/AACAP1NbSj5UYtG8uZcBO0kbfbm1Kja+9YYwugAAgD8AAIA/oAlCPnTYzryw3tc4IPEVtytTQL5KiBK4AACAPwAAgD9tRDg+aVNovJJN3DtvTCW6ogjQverXBbsAAIA/AACAPzMpULwfLLg/Yw3cvd8vML0rlq28Qi6yvAAAAAAAAAAAZixjvnvqxLxa0gy6MNRRuI3mKz4HVzE5AACAPwAAgD/mKb69FDicuittJTRE0TcwwA8TOgGRn7MAAAAAAACAP2YiQj60NMC8KkgVPARwp7r8hiy+RXaBuwAAgD8AAIA/04dAPmLAGD4DYmu+NSOgvmbZnbzkmBC8AAAAAAAAAACO/5++cU4VP+0fvjyaCuS+aEf6vehG+DwAAAAAAAAAABPAhr5UlhU+CpRmPnUfOb4ILx68rJAkPQAAAAAAAAAA5gMpPq/7nT+i0wo/tDIHv31RPD5sWSc+AAAAAAAAAACavji+NuVuvJcEBbttHh+5HNLLPTIBJzoAAIA/AACAPw3+qr5OeL4+0GtvPlTdrL4RSpy9tsWKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFci22G7BiMAWyUS9iMAXSUR0CV8y6uGKyfdX2UKGgGR0Btg+C5EtulaAdLxWgIR0CV80gaWHDadX2UKGgGR0BiczOC5EtvaAdN6ANoCEdAlfQByCFsYXV9lChoBkdAcHgBzFMqSWgHS95oCEdAlfRDTfBN23V9lChoBkdAcHeCDEm6XmgHS9VoCEdAlfT0I1LrX3V9lChoBkdAb2IvW6K+BmgHTS4BaAhHQJX1vK9wm3R1fZQoaAZHQHIMPb0voNdoB0vOaAhHQJX10JzDGcZ1fZQoaAZHQG9nQokRjBloB0vdaAhHQJX3FD9fkWB1fZQoaAZHQHCU3SfDk2hoB0vnaAhHQJX3RtBOYY11fZQoaAZHQHCBMIJJGvxoB0vmaAhHQJX4q7g88tB1fZQoaAZHQHDJIU8FINFoB0vkaAhHQJX5vYQJ5Vx1fZQoaAZHQHHutqDbrTpoB00mAWgIR0CV+ppJPIn0dX2UKGgGR0BxjXPJJXhgaAdNAwFoCEdAlfqwMc6vJXV9lChoBkdAciyRRdhRZWgHTQYBaAhHQJX6rQpnYg91fZQoaAZHQHDqY0ZWJadoB0vvaAhHQJX6/QQcxTN1fZQoaAZHQGO0PEbYK6ZoB03oA2gIR0CV+4tTkyULdX2UKGgGR0Bw4C4I8hcJaAdL9mgIR0CV/EGUwBYFdX2UKGgGR0BxLOB06o2oaAdNGwFoCEdAlfyTzd1uBXV9lChoBkdAcMIWQOnVG2gHS+5oCEdAlfz+qioKlnV9lChoBkdAcYCsenyd4GgHS8toCEdAlf1cf3evZHV9lChoBkdAcWrvCuU2UGgHS/9oCEdAlf1nN9ph4XV9lChoBkdAcpMWvr4WUWgHS+FoCEdAlf4USVW0Z3V9lChoBkdAb1Kh1Tzd12gHS+BoCEdAlgA2I9C/oXV9lChoBkdAbp8rI5o4/GgHS9BoCEdAlgB7G3nZCnV9lChoBkdAbrSzv7WNFWgHS89oCEdAlgCCmZVn3HV9lChoBkdAb3mkona37WgHS9ZoCEdAlgC6DsdDIHV9lChoBkdAcbazkZJkG2gHTR4BaAhHQJYBFGy5Zr51fZQoaAZHQG9+NS619fFoB0vQaAhHQJYBWBJ7LMd1fZQoaAZHQHCXpKzzErJoB0vsaAhHQJYBmAuqWC51fZQoaAZHQHGpmzWwu/VoB0vtaAhHQJYDGpqASWZ1fZQoaAZHQHCMMj3VTaVoB0vjaAhHQJYDlYhdMTN1fZQoaAZHQEQFhhH9WIZoB0vVaAhHQJYECETQE6l1fZQoaAZHQHA9+HrQgLZoB01FAWgIR0CWBlnAIppfdX2UKGgGR0Bw2VkkKNQ1aAdLy2gIR0CWBrH7xd6cdX2UKGgGR0BxsZ7D2rXEaAdL3mgIR0CWBx6Ae7tidX2UKGgGR0Bu0rZ6D5CXaAdLyWgIR0CWB4VafSQYdX2UKGgGR0BxHgCPp6hQaAdLx2gIR0CWB9EkB0ZFdX2UKGgGR0BwALw6QvHtaAdL7WgIR0CWCCYHxBmgdX2UKGgGR0By1Aona37UaAdL32gIR0CWCUFz+3pfdX2UKGgGR0BhGNsguAZsaAdN6ANoCEdAlgnPszEaVHV9lChoBkdAb1qjKPn0TWgHS89oCEdAlguY0EX+EXV9lChoBkdAb6xVn27FsGgHS9BoCEdAlgxX/kvK2nV9lChoBkdAb0pLM9r432gHS/FoCEdAlgxlImPYF3V9lChoBkdASM+Mhouf3GgHS6poCEdAlg4rLhaTwHV9lChoBkdAcLGYB/7SA2gHS8doCEdAlg84T4+KTHV9lChoBkdAb2YweNkvsmgHS81oCEdAlhEIukDZDnV9lChoBkdAcHzlq8DjimgHS9poCEdAlhFTNt65XnV9lChoBkdAX9MQBgeA/mgHTegDaAhHQJYR1Gx2SuB1fZQoaAZHQHJ1pmdy1eBoB0vnaAhHQJYSsotthux1fZQoaAZHQG8qp++dsi1oB0vPaAhHQJYSyq2jO9p1fZQoaAZHQG8UfKp1ifBoB00EAWgIR0CWEu//vOQhdX2UKGgGR0Bg7ZzvJA+qaAdN6ANoCEdAlhPBhpg1FnV9lChoBkdAb9cnQ6ZH/mgHS+1oCEdAlhQnZ9NN8HV9lChoBkdAcR3uk1uR92gHS+5oCEdAlhV0eZG8VnV9lChoBkdAcXIPqcEvCmgHS+JoCEdAlhWWALApKHV9lChoBkdAcJ9MGorFwWgHS8poCEdAlhbEVJtix3V9lChoBkdAcHV23azu4WgHTRgBaAhHQJYXVWilBQh1fZQoaAZHQHBQvZZjhDRoB0vGaAhHQJYYF7w8W9F1fZQoaAZHQHCwOvQnhKloB0vTaAhHQJYZip3os7N1fZQoaAZHQHDQdZA6dUdoB0vRaAhHQJYZitZFG5N1fZQoaAZHQG88bp/wy7BoB00GAWgIR0CWGi4Qz1sddX2UKGgGR0BxP2VfNRm9aAdLu2gIR0CWGlHbRF7VdX2UKGgGR0BzGdLBbfP5aAdL/GgIR0CWGmP2wmmcdX2UKGgGR0ByjWq2jO9naAdLzmgIR0CWGnmwqy4XdX2UKGgGR0Bvyiqp97WvaAdL7WgIR0CWGqcNpdrwdX2UKGgGR0Bw2RkPMB6saAdL62gIR0CWHWmbb1yvdX2UKGgGR0BxHnGdZq20aAdL7mgIR0CWHaxdIGyHdX2UKGgGR0Bwg/hOxjaxaAdLwWgIR0CWHgag2606dX2UKGgGR0BfJYp6QeV+aAdN6ANoCEdAlh9YAbQ1JnV9lChoBkdAcL8z4k/r0WgHS81oCEdAliCXFLnLaHV9lChoBkdAX0X6sQumJmgHTegDaAhHQJYgppTMqz91fZQoaAZHQHLzcO9WZJFoB00PAWgIR0CWIWatLcsUdX2UKGgGR0BxLAjGDL8raAdL42gIR0CWIgh5Pdl/dX2UKGgGR0BwhhAfMfRvaAdL8mgIR0CWInghbGFSdX2UKGgGR0BxGrWQOnVHaAdL6WgIR0CWIoMJhOQAdX2UKGgGR0BzHdvFWGRFaAdNFAFoCEdAliNf9kz413V9lChoBkdAcHN3fQ8fWGgHTTkBaAhHQJYj/s0HhS91fZQoaAZHQG3WTYukDZFoB0vQaAhHQJYkcFhXr+p1fZQoaAZHQGNx/VRUFStoB03oA2gIR0CWJIJf6XSjdX2UKGgGR0BxowaUA1ejaAdNEgFoCEdAliYtkrf+CXV9lChoBkdAbnjR/mT1TWgHS9JoCEdAliclNg0CR3V9lChoBkdAcRkkEs8PnWgHS9loCEdAlidQEU0vXnV9lChoBkdAcukMmnfl62gHTQMBaAhHQJYnd3qzJIV1fZQoaAZHQG80z3qRlpZoB0vFaAhHQJYnewr1/Uh1fZQoaAZHQHAmPLLZBcBoB0vOaAhHQJYoWnJkoWp1fZQoaAZHQHCIAmReTmpoB0vPaAhHQJYpxnL7oB91fZQoaAZHQG8cTi0fHPxoB00uA2gIR0CWKhOOsDGMdX2UKGgGR0BwmVNzr/sFaAdL/WgIR0CWKkce8wpOdX2UKGgGR0Bw4+7g88s+aAdLwGgIR0CWKmKHwgDBdX2UKGgGR0BxdNF5OafBaAdLz2gIR0CWKmc+aBqcdX2UKGgGR0BxZYow22ofaAdLy2gIR0CWLauqm0mddX2UKGgGR0Bw4UahpQDWaAdL2mgIR0CWLdYKYzBRdX2UKGgGR0BxZD1VYISlaAdL0GgIR0CWLdvKEFnqdX2UKGgGR0Bw3VkGzKLbaAdLwmgIR0CWLk8PWhAXdX2UKGgGR0ByDegVXV9XaAdNFQFoCEdAli/vk/8l5XV9lChoBkdAbf9U5MlC1WgHS9RoCEdAljBkS26TXHV9lChoBkdAb58ZJCjUNWgHS81oCEdAljCzZ6D5CXV9lChoBkdAb5MWpqASWmgHS91oCEdAljFpNwiqyXV9lChoBkdAcLxVTrE9+2gHTTEBaAhHQJYz5tNzr/t1fZQoaAZHQHHf3KOktVdoB004AWgIR0CWNHs+FDfFdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "n_steps": 2048,
56
+ "gamma": 0.99,
57
+ "gae_lambda": 0.95,
58
+ "ent_coef": 0.0,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 10,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d73df126a08937c8f83817a6ec71a9fb5af7dab52032ae091aefd1dfae094db
3
+ size 88490
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa92616a1d1236425f674610b2b361773143110d9f48a9c9e37c27fc92e303a1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.8828645, "std_reward": 14.463851005136132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-05T19:44:52.020665"}