File size: 13,992 Bytes
e06aa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "859a9005-4458-4b87-b773-e06738fcea43",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tqdm.auto import tqdm as auto_tqdm\n",
    "import tqdm\n",
    "\n",
    "tqdm.tqdm = auto_tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d5a4ce9e-de32-4719-87f6-1cb01eb9e797",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import List, Optional\n",
    "from dataclasses import dataclass, field\n",
    "\n",
    "@dataclass\n",
    "class ScriptArguments:\n",
    "    \"\"\"\n",
    "    The name of the Casual LM model we wish to fine with SFTTrainer\n",
    "    \"\"\"\n",
    "\n",
    "    model_name: Optional[str] = field(default=\"facebook/opt-350m\", metadata={\"help\": \"the model name\"})\n",
    "    dataset_name: Optional[str] = field(\n",
    "        default=\"timdettmers/openassistant-guanaco\", metadata={\"help\": \"the dataset name\"}\n",
    "    )\n",
    "    dataset_text_field: Optional[str] = field(default=\"text\", metadata={\"help\": \"the text field of the dataset\"})\n",
    "    report_to: Optional[str] = field(default=\"none\", metadata={\"help\": \"use 'wandb' to log with wandb\"})\n",
    "    learning_rate: Optional[float] = field(default=1.41e-5, metadata={\"help\": \"the learning rate\"})\n",
    "    batch_size: Optional[int] = field(default=64, metadata={\"help\": \"the batch size\"})\n",
    "    seq_length: Optional[int] = field(default=512, metadata={\"help\": \"Input sequence length\"})\n",
    "    gradient_accumulation_steps: Optional[int] = field(\n",
    "        default=1, metadata={\"help\": \"the number of gradient accumulation steps\"}\n",
    "    )\n",
    "    load_in_8bit: Optional[bool] = field(default=False, metadata={\"help\": \"load the model in 8 bits precision\"})\n",
    "    load_in_4bit: Optional[bool] = field(default=False, metadata={\"help\": \"load the model in 4 bits precision\"})\n",
    "    use_peft: Optional[bool] = field(default=False, metadata={\"help\": \"Wether to use PEFT or not to train adapters\"})\n",
    "    trust_remote_code: Optional[bool] = field(default=False, metadata={\"help\": \"Enable `trust_remote_code`\"})\n",
    "    output_dir: Optional[str] = field(default=\"output\", metadata={\"help\": \"the output directory\"})\n",
    "    peft_lora_r: Optional[int] = field(default=64, metadata={\"help\": \"the r parameter of the LoRA adapters\"})\n",
    "    peft_lora_alpha: Optional[int] = field(default=16, metadata={\"help\": \"the alpha parameter of the LoRA adapters\"})\n",
    "    logging_steps: Optional[int] = field(default=1, metadata={\"help\": \"the number of logging steps\"})\n",
    "    use_auth_token: Optional[bool] = field(default=False, metadata={\"help\": \"Use HF auth token to access the model\"})\n",
    "    num_train_epochs: Optional[int] = field(default=3, metadata={\"help\": \"the number of training epochs\"})\n",
    "    max_steps: Optional[int] = field(default=-1, metadata={\"help\": \"the number of training steps\"})\n",
    "    save_steps: Optional[int] = field(\n",
    "        default=100, metadata={\"help\": \"Number of updates steps before two checkpoint saves\"}\n",
    "    )\n",
    "    save_total_limit: Optional[int] = field(default=10, metadata={\"help\": \"Limits total number of checkpoints.\"})\n",
    "    push_to_hub: Optional[bool] = field(default=False, metadata={\"help\": \"Push the model to HF Hub\"})\n",
    "    fp16: Optional[bool] = field(default=False, metadata={\"help\": \"Whether to activate fp16 mixed precision\"})\n",
    "    bf16: Optional[bool] = field(default=False, metadata={\"help\": \"Whether to activate bf16 mixed precision\"})\n",
    "    gradient_checkpointing: Optional[bool] = field(\n",
    "        default=False, metadata={\"help\": \"Whether to use gradient checkpointing or no\"}\n",
    "    )\n",
    "    gradient_checkpointing_kwargs: Optional[dict] = field(\n",
    "        default=None,\n",
    "        metadata={\n",
    "            \"help\": \"key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`\"\n",
    "        },\n",
    "    )\n",
    "    hub_model_id: Optional[str] = field(default=None, metadata={\"help\": \"The name of the model on HF Hub\"})\n",
    "    mixed_precision: Optional[str] = field(default=\"bf16\", metadata={\"help\": \"Mixed precision training\"})\n",
    "    target_modules: Optional[List[str]] = field(default=None, metadata={\"help\": \"Target modules for LoRA adapters\"})\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "94af6f10-a793-48d5-9de9-c16438137354",
   "metadata": {},
   "outputs": [],
   "source": [
    "# accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml --num_processes=1 \\\n",
    "# \texamples/scripts/sft.py \\\n",
    "# \t--model_name mistralai/Mixtral-8x7B-Instruct-v0.1 \\\n",
    "# \t--dataset_name trl-lib/ultrachat_200k_chatml \\\n",
    "# \t--batch_size 2 \\\n",
    "# \t--gradient_accumulation_steps 1 \\\n",
    "# \t--learning_rate 2e-4 \\\n",
    "# \t--save_steps 200_000 \\\n",
    "# \t--use_peft \\\n",
    "# \t--peft_lora_r 16 --peft_lora_alpha 32 \\\n",
    "# \t--target_modules q_proj k_proj v_proj o_proj \\\n",
    "# \t--load_in_4bit"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c0a87544-6451-4528-8fce-342916e904e9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6979a4133b1341a18d070818593d06a7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/19 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import torch\n",
    "from accelerate import Accelerator\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments\n",
    "from peft import LoraConfig\n",
    "from trl import is_xpu_available\n",
    "\n",
    "# sft.py script version 0.7.10\n",
    "\n",
    "device_map = (\n",
    "    {\"\": f\"xpu:{Accelerator().local_process_index}\"}\n",
    "        if is_xpu_available()\n",
    "        else {\"\": Accelerator().local_process_index}\n",
    ")\n",
    "\n",
    "torch_dtype = torch.bfloat16\n",
    "\n",
    "quantization_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True\n",
    ")\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir = './output1',\n",
    "    per_device_train_batch_size = 2,\n",
    "    gradient_accumulation_steps = 1,\n",
    "    learning_rate = 2e-4,\n",
    "    logging_steps = 1,\n",
    "    num_train_epochs = 3,\n",
    "    max_steps = -1,\n",
    "    #report_to = 'wandb',\n",
    "    save_steps = 200_000,\n",
    "    save_total_limit = 10,\n",
    "    push_to_hub = False,\n",
    "    hub_model_id = None,\n",
    "    gradient_checkpointing = False,\n",
    "    gradient_checkpointing_kwargs = dict(use_reentrant=False),\n",
    "    fp16 = False,\n",
    "    bf16 = False,\n",
    ")\n",
    "\n",
    "peft_config = LoraConfig(\n",
    "    r = 16,\n",
    "    lora_alpha = 32,\n",
    "    bias = \"none\",\n",
    "    task_type = \"CAUSAL_LM\",\n",
    "    target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n",
    ")\n",
    "\n",
    "model_name = 'mistralai/Mixtral-8x7B-Instruct-v0.1'\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    model_name,\n",
    "    quantization_config = quantization_config,\n",
    "    device_map = device_map,\n",
    "    trust_remote_code = False,\n",
    "    torch_dtype = torch_dtype\n",
    ")\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)\n",
    "tokenizer.pad_token = tokenizer.eos_token\n",
    "tokenizer.padding_side = 'right'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "46b10959-35bd-4b8a-a258-2ecbf7051854",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mantonvo\u001b[0m (\u001b[33mnorthern-light\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
     ]
    }
   ],
   "source": [
    "import wandb, os\n",
    "wandb.login()\n",
    "\n",
    "wandb_project = \"mixtral-select-finetune\"\n",
    "if len(wandb_project) > 0:\n",
    "    os.environ[\"WANDB_PROJECT\"] = wandb_project"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "00889d6a-1089-4686-abf8-7ce1bfc07d7c",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset, DatasetDict, concatenate_datasets\n",
    "import pandas as pd\n",
    "\n",
    "# Filenames of your CSV files\n",
    "filenames = ['./select-1.csv', './select-2.csv', './select-3.csv']\n",
    "\n",
    "# Load datasets and split each\n",
    "split_datasets = {'train': [], 'validation': []}\n",
    "\n",
    "for filename in filenames:\n",
    "    # Load the CSV file as a Dataset\n",
    "    dataset = load_dataset('csv', data_files=filename, split='train')\n",
    "\n",
    "    # Split the dataset into training and validation\n",
    "    split = dataset.train_test_split(test_size=0.2, seed=42)\n",
    "    \n",
    "    # Append the split datasets to the corresponding lists\n",
    "    split_datasets['train'].append(split['train'])\n",
    "    split_datasets['validation'].append(split['test'])\n",
    "\n",
    "# Concatenate the datasets for training and validation\n",
    "train_dataset = concatenate_datasets(split_datasets['train'])\n",
    "eval_dataset = concatenate_datasets(split_datasets['validation'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "2c053ed9-44d8-4675-b387-293759e71aeb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "11f151e07a914fd783e585860f2a1f3b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/24000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "70f879fc29db4fc08dcb8514dc8d62ed",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/6000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from trl import SFTTrainer\n",
    "\n",
    "trainer = SFTTrainer(\n",
    "    model = model,\n",
    "    args = training_args,\n",
    "    max_seq_length = 512, #32 * 1024,\n",
    "    train_dataset = train_dataset,\n",
    "    eval_dataset = eval_dataset,\n",
    "    dataset_text_field = 'text',\n",
    "    peft_config = peft_config,\n",
    "    tokenizer = tokenizer\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4026c950-8034-4e02-9138-51f11588790b",
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()\n",
    "trainer.save_model('./output1')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "3ad28a98-4323-46ee-9957-c299fb26686d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from peft import PeftModel\n",
    "\n",
    "ft_model = PeftModel.from_pretrained(model, \"./output1\")\n",
    "\n",
    "def generate_response(prompt):\n",
    "    encoded_input = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=True)\n",
    "    model_inputs = encoded_input.to('cuda')\n",
    "\n",
    "    generated_ids = ft_model.generate(**model_inputs,\n",
    "                                 max_new_tokens=150,\n",
    "                                 do_sample=True,\n",
    "                                 pad_token_id=tokenizer.eos_token_id)\n",
    "    decoded_output = tokenizer.batch_decode(generated_ids)\n",
    "    return decoded_output[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "5c5d50d4-8732-4939-a4bd-f6fd7bdbc498",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'<s> [INST] Hey, what\\'s up? [/INST] Hello! I\\'m doing well, thank you for asking. How about you? 🙂\\n\\nAs for the topic, since it\\'s Easter Sunday today, I thought it would be appropriate to share a song about the holiday. This one is called \"Jesus and Rosemary\" and it\\'s a traditional Irish tune featuring the accordion, tin whistle, and bodhrán instruments. The lyrics tell the story of Jesus, his mother Mary, and the resurrection that Easter commemorates. Here they are in case you want to follow along:\\n\\nUpon a golden Sunday, As morning broke so soon, Rosemary\\'s arms were thrown around a tree, As if to claim it\\'s tune.'"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "prompt = \"[INST] Hey, what's up? [/INST]\"\n",
    "generate_response(prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "f8e1e52b-6dee-48f4-9ad2-9161de24ab70",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.config.to_json_file('config.json')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}