training script
Browse files
train.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from accelerate import Accelerator
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments
|
4 |
+
from peft import LoraConfig
|
5 |
+
from trl import is_xpu_available
|
6 |
+
|
7 |
+
# sft.py script version 0.7.10
|
8 |
+
|
9 |
+
device_map = (
|
10 |
+
{"": f"xpu:{Accelerator().local_process_index}"}
|
11 |
+
if is_xpu_available()
|
12 |
+
else {"": Accelerator().local_process_index}
|
13 |
+
)
|
14 |
+
|
15 |
+
torch_dtype = torch.bfloat16
|
16 |
+
|
17 |
+
quantization_config = BitsAndBytesConfig(
|
18 |
+
load_in_4bit=True
|
19 |
+
)
|
20 |
+
|
21 |
+
training_args = TrainingArguments(
|
22 |
+
output_dir = './output1',
|
23 |
+
per_device_train_batch_size = 2,
|
24 |
+
gradient_accumulation_steps = 1,
|
25 |
+
learning_rate = 2e-4,
|
26 |
+
logging_steps = 1,
|
27 |
+
num_train_epochs = 3,
|
28 |
+
max_steps = -1,
|
29 |
+
#report_to = 'wandb',
|
30 |
+
save_steps = 200_000,
|
31 |
+
save_total_limit = 10,
|
32 |
+
push_to_hub = False,
|
33 |
+
hub_model_id = None,
|
34 |
+
gradient_checkpointing = False,
|
35 |
+
gradient_checkpointing_kwargs = dict(use_reentrant=False),
|
36 |
+
fp16 = False,
|
37 |
+
bf16 = False,
|
38 |
+
)
|
39 |
+
|
40 |
+
peft_config = LoraConfig(
|
41 |
+
r = 16,
|
42 |
+
lora_alpha = 32,
|
43 |
+
bias = "none",
|
44 |
+
task_type = "CAUSAL_LM",
|
45 |
+
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj']
|
46 |
+
)
|
47 |
+
|
48 |
+
model_name = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_name,
|
51 |
+
quantization_config = quantization_config,
|
52 |
+
device_map = device_map,
|
53 |
+
trust_remote_code = False,
|
54 |
+
torch_dtype = torch_dtype
|
55 |
+
)
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
58 |
+
tokenizer.pad_token = tokenizer.eos_token
|
59 |
+
tokenizer.padding_side = 'right'
|
60 |
+
|
61 |
+
################
|
62 |
+
|
63 |
+
from datasets import load_dataset, DatasetDict, concatenate_datasets
|
64 |
+
import pandas as pd
|
65 |
+
|
66 |
+
# Filenames of your CSV files
|
67 |
+
filenames = ['./select-1.csv', './select-2.csv', './select-3.csv']
|
68 |
+
|
69 |
+
# Load datasets and split each
|
70 |
+
split_datasets = {'train': [], 'validation': []}
|
71 |
+
|
72 |
+
for filename in filenames:
|
73 |
+
# Load the CSV file as a Dataset
|
74 |
+
dataset = load_dataset('csv', data_files=filename, split='train')
|
75 |
+
|
76 |
+
# Split the dataset into training and validation
|
77 |
+
split = dataset.train_test_split(test_size=0.2, seed=42)
|
78 |
+
|
79 |
+
# Append the split datasets to the corresponding lists
|
80 |
+
split_datasets['train'].append(split['train'])
|
81 |
+
split_datasets['validation'].append(split['test'])
|
82 |
+
|
83 |
+
# Concatenate the datasets for training and validation
|
84 |
+
train_dataset = concatenate_datasets(split_datasets['train'])
|
85 |
+
eval_dataset = concatenate_datasets(split_datasets['validation'])
|
86 |
+
|
87 |
+
#################
|
88 |
+
|
89 |
+
from trl import SFTTrainer
|
90 |
+
|
91 |
+
trainer = SFTTrainer(
|
92 |
+
model = model,
|
93 |
+
args = training_args,
|
94 |
+
max_seq_length = 512, #32 * 1024,
|
95 |
+
train_dataset = train_dataset,
|
96 |
+
eval_dataset = eval_dataset,
|
97 |
+
dataset_text_field = 'text',
|
98 |
+
peft_config = peft_config,
|
99 |
+
tokenizer = tokenizer
|
100 |
+
)
|
101 |
+
|
102 |
+
trainer.train()
|
103 |
+
trainer.save_model('./output1')
|