antoooooine
commited on
Commit
·
0d304b7
1
Parent(s):
362853d
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPushDense-v2.zip +3 -0
- a2c-PandaPushDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaPushDense-v2/data +94 -0
- a2c-PandaPushDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaPushDense-v2/policy.pth +3 -0
- a2c-PandaPushDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaPushDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPushDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPushDense-v2
|
16 |
+
type: PandaPushDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -9.32 +/- 4.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPushDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPushDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPushDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cda9f6fd2caf343a4c9579b49205a50ea18aef4b4e24be5283e092805c1e55a
|
3 |
+
size 122765
|
a2c-PandaPushDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaPushDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc076e37d00>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc076e32a00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWV0AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLEoWUaBtoHiiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCF0lFKUaCRoHiiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCF0lFKUaCloHiiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaC1LEoWUaCF0lFKUaDNoHiiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaC1LEoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000.0,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675535922067399800,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxLWTv69jqD6THoU9pG3JvlKTCL6THoU9bPmGPkp+Tz+THoU9jR/4PhnBuD6THoU9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUCQBvgWS2T5nV6syVQoxPwBqhb9nV6syAndzv7Q25D5nV6syxGCpv7X/b79nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADRYLe+ZXskv64L0j71YYs9c8e/vQJYtD3EtZO/r2OoPpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD2kbcm+UpMIvpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD1s+YY+Sn5PP5MehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD2NH/g+GcG4PpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6buUaA5LBEsShpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-1.1539845 0.32888553 0.06499972]\n [-0.39341462 -0.13337448 0.06499972]\n [ 0.2636217 0.81052077 0.06499972]\n [ 0.4846157 0.36084822 0.06499972]]",
|
60 |
+
"desired_goal": "[[-1.2611508e-01 4.2494217e-01 1.9946766e-08]\n [ 6.9156390e-01 -1.0422974e+00 1.9946766e-08]\n [-9.5103467e-01 4.4572985e-01 1.9946766e-08]\n [-1.3232656e+00 -9.3749553e-01 1.9946766e-08]]",
|
61 |
+
"observation": "[[-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 -1.1539845e+00 3.2888553e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 -3.9341462e-01 -1.3337448e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 2.6362169e-01 8.1052077e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 4.8461571e-01 3.6084822e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlm8FPmt4uT0K16M8KIPfvEMNEj4K16M8BiLUPcGDtjwK16M8pBn9vdm6/L0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcjJ0ve57GT4K16M8vmqzvMhfDL4K16M8oXQqPPSIuD0K16M88kT9PSrOvDwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACWbwU+a3i5PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAog9+8Qw0SPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAGItQ9wYO2PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACkGf292br8vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 0.13030848 0.09056171 0.02 ]\n [-0.02728422 0.14262871 0.02 ]\n [ 0.10358052 0.02227962 0.02 ]\n [-0.12358406 -0.12340326 0.02 ]]",
|
71 |
+
"desired_goal": "[[-0.05961842 0.14988682 0.02 ]\n [-0.02190148 -0.13708413 0.02 ]\n [ 0.01040378 0.09010497 0.02 ]\n [ 0.12366666 0.02304753 0.02 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.3030848e-01 9.0561710e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -2.7284220e-02 1.4262871e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0358052e-01 2.2279622e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.2358406e-01 -1.2340326e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wXiEsCUhpRSlIwBbJRLMowBdJRHQKJYh3xFy7x1fZQoaAZoCWgPQwhiLxSwHQwgwJSGlFKUaBVLMmgWR0CiV4lE7W/bdX2UKGgGaAloD0MI5+Jve4JMLMCUhpRSlGgVSzJoFkdAolcENe+mFnV9lChoBmgJaA9DCAjIl1DBERfAlIaUUpRoFUsyaBZHQKJWfnIyTIN1fZQoaAZoCWgPQwgE/vDz34MqwJSGlFKUaBVLMmgWR0CiWXh5xBE8dX2UKGgGaAloD0MIPiXnxB5qHMCUhpRSlGgVSzJoFkdAolh6RwIdEXV9lChoBmgJaA9DCHYb1H5rJxbAlIaUUpRoFUsyaBZHQKJX9XbM5fd1fZQoaAZoCWgPQwiSJXMs70ocwJSGlFKUaBVLMmgWR0CiV2+5WilBdX2UKGgGaAloD0MImzqPiv8bJcCUhpRSlGgVSzJoFkdAolppp35eq3V9lChoBmgJaA9DCIdT5uYbiSnAlIaUUpRoFUsyaBZHQKJZa3vx6OZ1fZQoaAZoCWgPQwjBx2DFqdYpwJSGlFKUaBVLMmgWR0CiWOamfoRqdX2UKGgGaAloD0MIXtbEAl95McCUhpRSlGgVSzJoFkdAolhgq3EycnV9lChoBmgJaA9DCLiVXpuNdQ7AlIaUUpRoFUsyaBZHQKJbVCeEqUh1fZQoaAZoCWgPQwj43XTLDvEHwJSGlFKUaBVLMmgWR0CiWlY0l7dBdX2UKGgGaAloD0MIzCcrhqsjDcCUhpRSlGgVSzJoFkdAolnRJiAlOXV9lChoBmgJaA9DCBSYTus2KO6/lIaUUpRoFUsyaBZHQKJZSyWRigF1fZQoaAZoCWgPQwhLV7CNeFIbwJSGlFKUaBVLMmgWR0CiXDiLMs6JdX2UKGgGaAloD0MI+KkqNBA7KMCUhpRSlGgVSzJoFkdAols6Us4DLnV9lChoBmgJaA9DCJSHhVrTDCXAlIaUUpRoFUsyaBZHQKJatUSZjQR1fZQoaAZoCWgPQwgbDeAtkMAXwJSGlFKUaBVLMmgWR0CiWi+BYmsvdX2UKGgGaAloD0MIBHP0+L3VKcCUhpRSlGgVSzJoFkdAol1lhoduHnV9lChoBmgJaA9DCJVIopdRBCvAlIaUUpRoFUsyaBZHQKJcZ05lvqF1fZQoaAZoCWgPQwiAgosVNagVwJSGlFKUaBVLMmgWR0CiW+JAt4A0dX2UKGgGaAloD0MIt5ifG5riFsCUhpRSlGgVSzJoFkdAoltcQ5FPSHV9lChoBmgJaA9DCNjYJaq3jiHAlIaUUpRoFUsyaBZHQKJeZbY9Pk91fZQoaAZoCWgPQwhSms3jMAApwJSGlFKUaBVLMmgWR0CiXWfJFLFodX2UKGgGaAloD0MISIyeW+hqHcCUhpRSlGgVSzJoFkdAolzivX9R8HV9lChoBmgJaA9DCEg3wqIiViPAlIaUUpRoFUsyaBZHQKJcXMMZxaR1fZQoaAZoCWgPQwiMvoI0Y9H8v5SGlFKUaBVLMmgWR0CiX1F0HQhPdX2UKGgGaAloD0MIAHLChNHsCcCUhpRSlGgVSzJoFkdAol5TN0NjLHV9lChoBmgJaA9DCOSghJm2fyDAlIaUUpRoFUsyaBZHQKJdzipeeFt1fZQoaAZoCWgPQwiYTYBh+dMQwJSGlFKUaBVLMmgWR0CiXUg2qDK6dX2UKGgGaAloD0MI8YKI1LRLK8CUhpRSlGgVSzJoFkdAomA/FWGRFXV9lChoBmgJaA9DCLd546Qwb/e/lIaUUpRoFUsyaBZHQKJfQNlyzX11fZQoaAZoCWgPQwhJLZRMTo0mwJSGlFKUaBVLMmgWR0CiXrwWN3nqdX2UKGgGaAloD0MIVYZxN4jGFcCUhpRSlGgVSzJoFkdAol42FFlTWHV9lChoBmgJaA9DCIbkZOJWYRnAlIaUUpRoFUsyaBZHQKJhGlHBk7R1fZQoaAZoCWgPQwigi4aMRykhwJSGlFKUaBVLMmgWR0CiYBxrJr+HdX2UKGgGaAloD0MIKo2Y2edBEMCUhpRSlGgVSzJoFkdAol+XOGCZnnV9lChoBmgJaA9DCGn/A6xVCxnAlIaUUpRoFUsyaBZHQKJfETINmUZ1fZQoaAZoCWgPQwjgufdwyVEQwJSGlFKUaBVLMmgWR0CiYfqDsdDIdX2UKGgGaAloD0MICg+aXffW9r+UhpRSlGgVSzJoFkdAomD8PBi1A3V9lChoBmgJaA9DCGK+vAD7eDPAlIaUUpRoFUsyaBZHQKJgdzcynDR1fZQoaAZoCWgPQwhHIF7XL8gkwJSGlFKUaBVLMmgWR0CiX/GTC+DfdX2UKGgGaAloD0MIjubIyi9LIsCUhpRSlGgVSzJoFkdAomLWG47Rv3V9lChoBmgJaA9DCEloy7kUByHAlIaUUpRoFUsyaBZHQKJh1+CK77N1fZQoaAZoCWgPQwgtr1xvm9EqwJSGlFKUaBVLMmgWR0CiYVLUsnRcdX2UKGgGaAloD0MIc5zbhHuVG8CUhpRSlGgVSzJoFkdAomDM3wTdtXV9lChoBmgJaA9DCF35LM+DUyPAlIaUUpRoFUsyaBZHQKJjswQlKK51fZQoaAZoCWgPQwjl8bT8wOUQwJSGlFKUaBVLMmgWR0CiYrS3Td+HdX2UKGgGaAloD0MI3/lFCfprBMCUhpRSlGgVSzJoFkdAomIvpUxVQ3V9lChoBmgJaA9DCP4N2quPZxDAlIaUUpRoFUsyaBZHQKJhqaXrt3R1fZQoaAZoCWgPQwj8VYDvNh8WwJSGlFKUaBVLMmgWR0CiZKTpX6qLdX2UKGgGaAloD0MIvY44ZANZFcCUhpRSlGgVSzJoFkdAomOm4uscQ3V9lChoBmgJaA9DCD55WKg1jQ7AlIaUUpRoFUsyaBZHQKJjIdDIBBB1fZQoaAZoCWgPQwiJmBJJ9AIbwJSGlFKUaBVLMmgWR0CiYpwX668QdX2UKGgGaAloD0MIzR39L9fSHcCUhpRSlGgVSzJoFkdAomWcth/iHnV9lChoBmgJaA9DCOHra11qhBjAlIaUUpRoFUsyaBZHQKJknsTFl051fZQoaAZoCWgPQwjOABdkyxInwJSGlFKUaBVLMmgWR0CiZBm6oVEedX2UKGgGaAloD0MIOYB+37/5F8CUhpRSlGgVSzJoFkdAomOTw2ETQHV9lChoBmgJaA9DCLw9CAH5Ei7AlIaUUpRoFUsyaBZHQKJmkgvDgqF1fZQoaAZoCWgPQwiZ2HxcG0onwJSGlFKUaBVLMmgWR0CiZZQm/nGLdX2UKGgGaAloD0MILNUFvMxQEcCUhpRSlGgVSzJoFkdAomUPPqs2enV9lChoBmgJaA9DCISEKF/QUhHAlIaUUpRoFUsyaBZHQKJkiS39aU11fZQoaAZoCWgPQwi9rIkFvgohwJSGlFKUaBVLMmgWR0CiZ4dfb9IgdX2UKGgGaAloD0MIndSXpZ2aGMCUhpRSlGgVSzJoFkdAomaJMnJDE3V9lChoBmgJaA9DCN9vtOOG2zHAlIaUUpRoFUsyaBZHQKJmBDR+jM51fZQoaAZoCWgPQwgYsyWrInwQwJSGlFKUaBVLMmgWR0CiZX59uxbCdX2UKGgGaAloD0MIgXhdv2BnG8CUhpRSlGgVSzJoFkdAomiL1f3N93V9lChoBmgJaA9DCGfxYmGIvC7AlIaUUpRoFUsyaBZHQKJnjb1RLsd1fZQoaAZoCWgPQwjmH32TprEUwJSGlFKUaBVLMmgWR0CiZwkJBw+/dX2UKGgGaAloD0MIbATidf1aIsCUhpRSlGgVSzJoFkdAomaDFhoduHV9lChoBmgJaA9DCFQB9zx/4irAlIaUUpRoFUsyaBZHQKJpba4c3l11fZQoaAZoCWgPQwgRx7q4jTYiwJSGlFKUaBVLMmgWR0CiaG/mT1TSdX2UKGgGaAloD0MIVI80uK29GMCUhpRSlGgVSzJoFkdAomfq4x1xKnV9lChoBmgJaA9DCGNjXkccUhrAlIaUUpRoFUsyaBZHQKJnZOt4iX91fZQoaAZoCWgPQwjHD5VGzKwbwJSGlFKUaBVLMmgWR0CiakL9deIEdX2UKGgGaAloD0MIbarukc0FF8CUhpRSlGgVSzJoFkdAomlE2NvOyHV9lChoBmgJaA9DCMwqbAa4IC3AlIaUUpRoFUsyaBZHQKJov8QZn+R1fZQoaAZoCWgPQwiSWFLuPjcmwJSGlFKUaBVLMmgWR0CiaDm8ujASdX2UKGgGaAloD0MIYTPABdlyD8CUhpRSlGgVSzJoFkdAomscTxoZh3V9lChoBmgJaA9DCH+IDRZOiiHAlIaUUpRoFUsyaBZHQKJqHhx5s0p1fZQoaAZoCWgPQwhxkuaPaTkxwJSGlFKUaBVLMmgWR0CiaZkOZssQdX2UKGgGaAloD0MIz02bcRrqKMCUhpRSlGgVSzJoFkdAomkTUmUnonV9lChoBmgJaA9DCIhmnlxT6CnAlIaUUpRoFUsyaBZHQKJsBX2/SIB1fZQoaAZoCWgPQwg3ixcLQ9QlwJSGlFKUaBVLMmgWR0CiawdtdiUgdX2UKGgGaAloD0MI6uqOxTZpDcCUhpRSlGgVSzJoFkdAomqCRlpXZHV9lChoBmgJaA9DCIXsvI3NDv6/lIaUUpRoFUsyaBZHQKJp/Cw8nu11fZQoaAZoCWgPQwiq9BPObiUtwJSGlFKUaBVLMmgWR0CibQYIBzV+dX2UKGgGaAloD0MIhZZ1/1joJsCUhpRSlGgVSzJoFkdAomwH2ugYg3V9lChoBmgJaA9DCLFtUWaDLAzAlIaUUpRoFUsyaBZHQKJrgs6q8151fZQoaAZoCWgPQwhApN++DhQhwJSGlFKUaBVLMmgWR0CiavzjNpuddX2UKGgGaAloD0MIX7LxYIv9AMCUhpRSlGgVSzJoFkdAom3j74zrNXV9lChoBmgJaA9DCKlNnNzv6CXAlIaUUpRoFUsyaBZHQKJs5hvze411fZQoaAZoCWgPQwhK7rCJzFzvv5SGlFKUaBVLMmgWR0CibGEQoTf0dX2UKGgGaAloD0MIZk8Cm3P4KcCUhpRSlGgVSzJoFkdAomvbYVZcLXV9lChoBmgJaA9DCIYDIVnAjCDAlIaUUpRoFUsyaBZHQKJuoKu0TlF1fZQoaAZoCWgPQwjBq+XOTMgmwJSGlFKUaBVLMmgWR0CibaJlz2eydX2UKGgGaAloD0MI+dnIdVNaFcCUhpRSlGgVSzJoFkdAom0dYMfA9HV9lChoBmgJaA9DCIgs0sQ7MBjAlIaUUpRoFUsyaBZHQKJsl2kBS1p1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaPushDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc90474e8d0b85b098fcf70e04239b218d363082c2756de64c81348757c04d37
|
3 |
+
size 50878
|
a2c-PandaPushDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f801e4a8ab2ffb7938a155cd78ae823b47a9bbf94a4f0db3fb545fa0c7fdac06
|
3 |
+
size 52158
|
a2c-PandaPushDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPushDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc076e37d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc076e32a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWV0AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLEoWUaBtoHiiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCF0lFKUaCRoHiiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCF0lFKUaCloHiiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaC1LEoWUaCF0lFKUaDNoHiiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaC1LEoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675535922067399800, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxLWTv69jqD6THoU9pG3JvlKTCL6THoU9bPmGPkp+Tz+THoU9jR/4PhnBuD6THoU9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUCQBvgWS2T5nV6syVQoxPwBqhb9nV6syAndzv7Q25D5nV6syxGCpv7X/b79nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADRYLe+ZXskv64L0j71YYs9c8e/vQJYtD3EtZO/r2OoPpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD2kbcm+UpMIvpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD1s+YY+Sn5PP5MehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6bvRYLe+ZXskv64L0j71YYs9c8e/vQJYtD2NH/g+GcG4PpMehT0f2N+55auQvPnZc7z5kXe7/UL8umsJ4zxD2eg7rhONvJl/6buUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.1539845 0.32888553 0.06499972]\n [-0.39341462 -0.13337448 0.06499972]\n [ 0.2636217 0.81052077 0.06499972]\n [ 0.4846157 0.36084822 0.06499972]]", "desired_goal": "[[-1.2611508e-01 4.2494217e-01 1.9946766e-08]\n [ 6.9156390e-01 -1.0422974e+00 1.9946766e-08]\n [-9.5103467e-01 4.4572985e-01 1.9946766e-08]\n [-1.3232656e+00 -9.3749553e-01 1.9946766e-08]]", "observation": "[[-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 -1.1539845e+00 3.2888553e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 -3.9341462e-01 -1.3337448e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 2.6362169e-01 8.1052077e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]\n [-3.5816053e-01 -6.4250785e-01 4.1024536e-01 6.8057932e-02\n -9.3642138e-02 8.8058487e-02 4.8461571e-01 3.6084822e-01\n 6.4999722e-02 -4.2694897e-04 -1.7660091e-02 -1.4883512e-02\n -3.7776215e-03 -1.9246038e-03 2.7714452e-02 7.1059777e-03\n -1.7221298e-02 -7.1258065e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlm8FPmt4uT0K16M8KIPfvEMNEj4K16M8BiLUPcGDtjwK16M8pBn9vdm6/L0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcjJ0ve57GT4K16M8vmqzvMhfDL4K16M8oXQqPPSIuD0K16M88kT9PSrOvDwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACWbwU+a3i5PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAog9+8Qw0SPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAGItQ9wYO2PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACkGf292br8vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.13030848 0.09056171 0.02 ]\n [-0.02728422 0.14262871 0.02 ]\n [ 0.10358052 0.02227962 0.02 ]\n [-0.12358406 -0.12340326 0.02 ]]", "desired_goal": "[[-0.05961842 0.14988682 0.02 ]\n [-0.02190148 -0.13708413 0.02 ]\n [ 0.01040378 0.09010497 0.02 ]\n [ 0.12366666 0.02304753 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.3030848e-01 9.0561710e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -2.7284220e-02 1.4262871e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0358052e-01 2.2279622e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.2358406e-01 -1.2340326e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wXiEsCUhpRSlIwBbJRLMowBdJRHQKJYh3xFy7x1fZQoaAZoCWgPQwhiLxSwHQwgwJSGlFKUaBVLMmgWR0CiV4lE7W/bdX2UKGgGaAloD0MI5+Jve4JMLMCUhpRSlGgVSzJoFkdAolcENe+mFnV9lChoBmgJaA9DCAjIl1DBERfAlIaUUpRoFUsyaBZHQKJWfnIyTIN1fZQoaAZoCWgPQwgE/vDz34MqwJSGlFKUaBVLMmgWR0CiWXh5xBE8dX2UKGgGaAloD0MIPiXnxB5qHMCUhpRSlGgVSzJoFkdAolh6RwIdEXV9lChoBmgJaA9DCHYb1H5rJxbAlIaUUpRoFUsyaBZHQKJX9XbM5fd1fZQoaAZoCWgPQwiSJXMs70ocwJSGlFKUaBVLMmgWR0CiV2+5WilBdX2UKGgGaAloD0MImzqPiv8bJcCUhpRSlGgVSzJoFkdAolppp35eq3V9lChoBmgJaA9DCIdT5uYbiSnAlIaUUpRoFUsyaBZHQKJZa3vx6OZ1fZQoaAZoCWgPQwjBx2DFqdYpwJSGlFKUaBVLMmgWR0CiWOamfoRqdX2UKGgGaAloD0MIXtbEAl95McCUhpRSlGgVSzJoFkdAolhgq3EycnV9lChoBmgJaA9DCLiVXpuNdQ7AlIaUUpRoFUsyaBZHQKJbVCeEqUh1fZQoaAZoCWgPQwj43XTLDvEHwJSGlFKUaBVLMmgWR0CiWlY0l7dBdX2UKGgGaAloD0MIzCcrhqsjDcCUhpRSlGgVSzJoFkdAolnRJiAlOXV9lChoBmgJaA9DCBSYTus2KO6/lIaUUpRoFUsyaBZHQKJZSyWRigF1fZQoaAZoCWgPQwhLV7CNeFIbwJSGlFKUaBVLMmgWR0CiXDiLMs6JdX2UKGgGaAloD0MI+KkqNBA7KMCUhpRSlGgVSzJoFkdAols6Us4DLnV9lChoBmgJaA9DCJSHhVrTDCXAlIaUUpRoFUsyaBZHQKJatUSZjQR1fZQoaAZoCWgPQwgbDeAtkMAXwJSGlFKUaBVLMmgWR0CiWi+BYmsvdX2UKGgGaAloD0MIBHP0+L3VKcCUhpRSlGgVSzJoFkdAol1lhoduHnV9lChoBmgJaA9DCJVIopdRBCvAlIaUUpRoFUsyaBZHQKJcZ05lvqF1fZQoaAZoCWgPQwiAgosVNagVwJSGlFKUaBVLMmgWR0CiW+JAt4A0dX2UKGgGaAloD0MIt5ifG5riFsCUhpRSlGgVSzJoFkdAoltcQ5FPSHV9lChoBmgJaA9DCNjYJaq3jiHAlIaUUpRoFUsyaBZHQKJeZbY9Pk91fZQoaAZoCWgPQwhSms3jMAApwJSGlFKUaBVLMmgWR0CiXWfJFLFodX2UKGgGaAloD0MISIyeW+hqHcCUhpRSlGgVSzJoFkdAolzivX9R8HV9lChoBmgJaA9DCEg3wqIiViPAlIaUUpRoFUsyaBZHQKJcXMMZxaR1fZQoaAZoCWgPQwiMvoI0Y9H8v5SGlFKUaBVLMmgWR0CiX1F0HQhPdX2UKGgGaAloD0MIAHLChNHsCcCUhpRSlGgVSzJoFkdAol5TN0NjLHV9lChoBmgJaA9DCOSghJm2fyDAlIaUUpRoFUsyaBZHQKJdzipeeFt1fZQoaAZoCWgPQwiYTYBh+dMQwJSGlFKUaBVLMmgWR0CiXUg2qDK6dX2UKGgGaAloD0MI8YKI1LRLK8CUhpRSlGgVSzJoFkdAomA/FWGRFXV9lChoBmgJaA9DCLd546Qwb/e/lIaUUpRoFUsyaBZHQKJfQNlyzX11fZQoaAZoCWgPQwhJLZRMTo0mwJSGlFKUaBVLMmgWR0CiXrwWN3nqdX2UKGgGaAloD0MIVYZxN4jGFcCUhpRSlGgVSzJoFkdAol42FFlTWHV9lChoBmgJaA9DCIbkZOJWYRnAlIaUUpRoFUsyaBZHQKJhGlHBk7R1fZQoaAZoCWgPQwigi4aMRykhwJSGlFKUaBVLMmgWR0CiYBxrJr+HdX2UKGgGaAloD0MIKo2Y2edBEMCUhpRSlGgVSzJoFkdAol+XOGCZnnV9lChoBmgJaA9DCGn/A6xVCxnAlIaUUpRoFUsyaBZHQKJfETINmUZ1fZQoaAZoCWgPQwjgufdwyVEQwJSGlFKUaBVLMmgWR0CiYfqDsdDIdX2UKGgGaAloD0MICg+aXffW9r+UhpRSlGgVSzJoFkdAomD8PBi1A3V9lChoBmgJaA9DCGK+vAD7eDPAlIaUUpRoFUsyaBZHQKJgdzcynDR1fZQoaAZoCWgPQwhHIF7XL8gkwJSGlFKUaBVLMmgWR0CiX/GTC+DfdX2UKGgGaAloD0MIjubIyi9LIsCUhpRSlGgVSzJoFkdAomLWG47Rv3V9lChoBmgJaA9DCEloy7kUByHAlIaUUpRoFUsyaBZHQKJh1+CK77N1fZQoaAZoCWgPQwgtr1xvm9EqwJSGlFKUaBVLMmgWR0CiYVLUsnRcdX2UKGgGaAloD0MIc5zbhHuVG8CUhpRSlGgVSzJoFkdAomDM3wTdtXV9lChoBmgJaA9DCF35LM+DUyPAlIaUUpRoFUsyaBZHQKJjswQlKK51fZQoaAZoCWgPQwjl8bT8wOUQwJSGlFKUaBVLMmgWR0CiYrS3Td+HdX2UKGgGaAloD0MI3/lFCfprBMCUhpRSlGgVSzJoFkdAomIvpUxVQ3V9lChoBmgJaA9DCP4N2quPZxDAlIaUUpRoFUsyaBZHQKJhqaXrt3R1fZQoaAZoCWgPQwj8VYDvNh8WwJSGlFKUaBVLMmgWR0CiZKTpX6qLdX2UKGgGaAloD0MIvY44ZANZFcCUhpRSlGgVSzJoFkdAomOm4uscQ3V9lChoBmgJaA9DCD55WKg1jQ7AlIaUUpRoFUsyaBZHQKJjIdDIBBB1fZQoaAZoCWgPQwiJmBJJ9AIbwJSGlFKUaBVLMmgWR0CiYpwX668QdX2UKGgGaAloD0MIzR39L9fSHcCUhpRSlGgVSzJoFkdAomWcth/iHnV9lChoBmgJaA9DCOHra11qhBjAlIaUUpRoFUsyaBZHQKJknsTFl051fZQoaAZoCWgPQwjOABdkyxInwJSGlFKUaBVLMmgWR0CiZBm6oVEedX2UKGgGaAloD0MIOYB+37/5F8CUhpRSlGgVSzJoFkdAomOTw2ETQHV9lChoBmgJaA9DCLw9CAH5Ei7AlIaUUpRoFUsyaBZHQKJmkgvDgqF1fZQoaAZoCWgPQwiZ2HxcG0onwJSGlFKUaBVLMmgWR0CiZZQm/nGLdX2UKGgGaAloD0MILNUFvMxQEcCUhpRSlGgVSzJoFkdAomUPPqs2enV9lChoBmgJaA9DCISEKF/QUhHAlIaUUpRoFUsyaBZHQKJkiS39aU11fZQoaAZoCWgPQwi9rIkFvgohwJSGlFKUaBVLMmgWR0CiZ4dfb9IgdX2UKGgGaAloD0MIndSXpZ2aGMCUhpRSlGgVSzJoFkdAomaJMnJDE3V9lChoBmgJaA9DCN9vtOOG2zHAlIaUUpRoFUsyaBZHQKJmBDR+jM51fZQoaAZoCWgPQwgYsyWrInwQwJSGlFKUaBVLMmgWR0CiZX59uxbCdX2UKGgGaAloD0MIgXhdv2BnG8CUhpRSlGgVSzJoFkdAomiL1f3N93V9lChoBmgJaA9DCGfxYmGIvC7AlIaUUpRoFUsyaBZHQKJnjb1RLsd1fZQoaAZoCWgPQwjmH32TprEUwJSGlFKUaBVLMmgWR0CiZwkJBw+/dX2UKGgGaAloD0MIbATidf1aIsCUhpRSlGgVSzJoFkdAomaDFhoduHV9lChoBmgJaA9DCFQB9zx/4irAlIaUUpRoFUsyaBZHQKJpba4c3l11fZQoaAZoCWgPQwgRx7q4jTYiwJSGlFKUaBVLMmgWR0CiaG/mT1TSdX2UKGgGaAloD0MIVI80uK29GMCUhpRSlGgVSzJoFkdAomfq4x1xKnV9lChoBmgJaA9DCGNjXkccUhrAlIaUUpRoFUsyaBZHQKJnZOt4iX91fZQoaAZoCWgPQwjHD5VGzKwbwJSGlFKUaBVLMmgWR0CiakL9deIEdX2UKGgGaAloD0MIbarukc0FF8CUhpRSlGgVSzJoFkdAomlE2NvOyHV9lChoBmgJaA9DCMwqbAa4IC3AlIaUUpRoFUsyaBZHQKJov8QZn+R1fZQoaAZoCWgPQwiSWFLuPjcmwJSGlFKUaBVLMmgWR0CiaDm8ujASdX2UKGgGaAloD0MIYTPABdlyD8CUhpRSlGgVSzJoFkdAomscTxoZh3V9lChoBmgJaA9DCH+IDRZOiiHAlIaUUpRoFUsyaBZHQKJqHhx5s0p1fZQoaAZoCWgPQwhxkuaPaTkxwJSGlFKUaBVLMmgWR0CiaZkOZssQdX2UKGgGaAloD0MIz02bcRrqKMCUhpRSlGgVSzJoFkdAomkTUmUnonV9lChoBmgJaA9DCIhmnlxT6CnAlIaUUpRoFUsyaBZHQKJsBX2/SIB1fZQoaAZoCWgPQwg3ixcLQ9QlwJSGlFKUaBVLMmgWR0CiawdtdiUgdX2UKGgGaAloD0MI6uqOxTZpDcCUhpRSlGgVSzJoFkdAomqCRlpXZHV9lChoBmgJaA9DCIXsvI3NDv6/lIaUUpRoFUsyaBZHQKJp/Cw8nu11fZQoaAZoCWgPQwiq9BPObiUtwJSGlFKUaBVLMmgWR0CibQYIBzV+dX2UKGgGaAloD0MIhZZ1/1joJsCUhpRSlGgVSzJoFkdAomwH2ugYg3V9lChoBmgJaA9DCLFtUWaDLAzAlIaUUpRoFUsyaBZHQKJrgs6q8151fZQoaAZoCWgPQwhApN++DhQhwJSGlFKUaBVLMmgWR0CiavzjNpuddX2UKGgGaAloD0MIX7LxYIv9AMCUhpRSlGgVSzJoFkdAom3j74zrNXV9lChoBmgJaA9DCKlNnNzv6CXAlIaUUpRoFUsyaBZHQKJs5hvze411fZQoaAZoCWgPQwhK7rCJzFzvv5SGlFKUaBVLMmgWR0CibGEQoTf0dX2UKGgGaAloD0MIZk8Cm3P4KcCUhpRSlGgVSzJoFkdAomvbYVZcLXV9lChoBmgJaA9DCIYDIVnAjCDAlIaUUpRoFUsyaBZHQKJuoKu0TlF1fZQoaAZoCWgPQwjBq+XOTMgmwJSGlFKUaBVLMmgWR0CibaJlz2eydX2UKGgGaAloD0MI+dnIdVNaFcCUhpRSlGgVSzJoFkdAom0dYMfA9HV9lChoBmgJaA9DCIgs0sQ7MBjAlIaUUpRoFUsyaBZHQKJsl2kBS1p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (671 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -9.323839052021503, "std_reward": 4.880178471582936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T20:19:25.292353"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ca379ca0988616a5a0780abcea9ad611f62413d253cf175e5125a535bbf7ba7
|
3 |
+
size 3900
|