--- base_model: Locutusque/gpt2-xl-conversational datasets: - Locutusque/InstructMix language: - en license: mit metrics: - bleu - perplexity - loss - accuracy pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo widget: - text: '<|USER|> Design a Neo4j database and Cypher function snippet to Display Extreme Dental hygiene: Using Mouthwash for Analysis for Beginners. Implement if/else or switch/case statements to handle different conditions related to the Consent. Provide detailed comments explaining your control flow and the reasoning behind each decision. <|ASSISTANT|> ' - text: '<|USER|> Write me a story about a magical place. <|ASSISTANT|> ' - text: '<|USER|> Write me an essay about the life of George Washington <|ASSISTANT|> ' - text: '<|USER|> Solve the following equation 2x + 10 = 20 <|ASSISTANT|> ' - text: '<|USER|> Craft me a list of some nice places to visit around the world. <|ASSISTANT|> ' - text: '<|USER|> How to manage a lazy employee: Address the employee verbally. Don''t allow an employee''s laziness or lack of enthusiasm to become a recurring issue. Tell the employee you''re hoping to speak with them about workplace expectations and performance, and schedule a time to sit down together. Question: To manage a lazy employee, it is suggested to talk to the employee. True, False, or Neither? <|ASSISTANT|> ' inference: parameters: temperature: 0.8 do_sample: true top_p: 0.14 top_k: 41 max_new_tokens: 250 repetition_penalty: 1.176 --- # antoste/gpt2-xl-conversational-Q4_K_M-GGUF This model was converted to GGUF format from [`Locutusque/gpt2-xl-conversational`](https://huggingface.co/Locutusque/gpt2-xl-conversational) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Locutusque/gpt2-xl-conversational) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo antoste/gpt2-xl-conversational-Q4_K_M-GGUF --hf-file gpt2-xl-conversational-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo antoste/gpt2-xl-conversational-Q4_K_M-GGUF --hf-file gpt2-xl-conversational-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo antoste/gpt2-xl-conversational-Q4_K_M-GGUF --hf-file gpt2-xl-conversational-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo antoste/gpt2-xl-conversational-Q4_K_M-GGUF --hf-file gpt2-xl-conversational-q4_k_m.gguf -c 2048 ```