- __init__.py +74 -0
- configuration_omnivore.py +128 -0
- modelling.py +1130 -0
__init__.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
3 |
+
# module, but to preserve other warnings. So, don't check this module at all.
|
4 |
+
|
5 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
# rely on isort to merge the imports
|
21 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {"configuration_omnivore": ["OMNIVORE_PRETRAINED_CONFIG_ARCHIVE_MAP", "OmnivoreConfig"]}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_vision_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["feature_extraction_omnivore"] = ["OmnivoreFeatureExtractor"]
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_omnivore"] = [
|
41 |
+
"OMNIVORE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
42 |
+
"OmnivoreForJointClassification",
|
43 |
+
"OmnivoreModel",
|
44 |
+
"OmnivorePreTrainedModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_omnivore import OMNIVORE_PRETRAINED_CONFIG_ARCHIVE_MAP, OmnivoreConfig
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_vision_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .feature_extraction_omnivore import OmnivoreFeatureExtractor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_omnivore import (
|
65 |
+
OMNIVORE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
OmnivoreForClassification,
|
67 |
+
OmnivoreModel,
|
68 |
+
OmnivorePreTrainedModel,
|
69 |
+
)
|
70 |
+
|
71 |
+
else:
|
72 |
+
import sys
|
73 |
+
|
74 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
configuration_omnivore.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Omnivore model configuration"""
|
16 |
+
|
17 |
+
from torch import nn
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
OMNIVORE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"anugunj/omnivore": "https://huggingface.co/anugunj/omnivore/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class OmnivoreConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`OmnivoreModel`]. It is used to instantiate an
|
33 |
+
Omnivore model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
34 |
+
with the defaults will yield a similar configuration to that of the Omnivore
|
35 |
+
[anugunj/omnivore](https://huggingface.co/anugunj/omnivore) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
input_channels (`int`, *optional*, defaults to 3):
|
42 |
+
The number of input channels.
|
43 |
+
patch_size (`int` | `List[int]`, *optional*, defaults to [4, 4, 4]):
|
44 |
+
Patch size to use in the patch embedding layer.
|
45 |
+
embed_dim (`int`, *optional*, defaults to 96):
|
46 |
+
Number of linear projection output channels.
|
47 |
+
depths (`List[int]`, *optional*, defaults to [2, 2, 6, 2],):
|
48 |
+
Depth (number of layers) for each stage.
|
49 |
+
num_heads (`List[int]`, *optional*, defaults to [3, 6, 12, 24]):
|
50 |
+
Number of attention head of each stage.
|
51 |
+
window_size (`int`, *optional*, defaults to 7)
|
52 |
+
Size of the window used by swin transformer in the model,
|
53 |
+
mlp_ratios (`float`, *optional*, defaults to 4.0):
|
54 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
55 |
+
encoder blocks.
|
56 |
+
attention_dropout_rate (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout ratio for the attention probabilities.
|
58 |
+
dropout_rate (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for the patch embeddings probabilities and projections in attention.
|
60 |
+
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
|
61 |
+
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
62 |
+
qkv_bias (`bool`, *optional*, defaults to True):
|
63 |
+
The bias bool for query, key and value in attentions
|
64 |
+
qk_scale (`bool`, *optional*, defaults to None):
|
65 |
+
Override default qk scale of head_dim ** -0.5 if set.
|
66 |
+
norm_layer (`nn.Module`, *optional*, defaults to nn.LayerNorm):
|
67 |
+
Normalization layer for the model
|
68 |
+
patch_norm (`bool`, *optional*, defaults to False):
|
69 |
+
If True, add normalization after patch embedding.
|
70 |
+
frozen_stages (`int`, *optional*, defaults to -1):
|
71 |
+
Stages to be frozen (stop grad and set eval mode) -1 means not freezing any parameters.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
|
75 |
+
Example:
|
76 |
+
```python
|
77 |
+
>>> from transformers import OmnivoreModel, OmnivoreConfig
|
78 |
+
|
79 |
+
>>> # Initializing a Omnivore omnivore-tiny-224 style configuration
|
80 |
+
>>> configuration = OmnivoreConfig()
|
81 |
+
>>> # Initializing a model from the omnivore-tiny-224 style configuration
|
82 |
+
>>> model = OmnivoreModel(configuration)
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
model_type = "omnivore"
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
input_channels=3,
|
91 |
+
patch_size=[2, 4, 4],
|
92 |
+
embed_dim=96,
|
93 |
+
depths=[2, 2, 18, 2],
|
94 |
+
num_heads=[3, 6, 12, 24],
|
95 |
+
window_size=(8, 7, 7),
|
96 |
+
mlp_ratio=4.0,
|
97 |
+
qkv_bias=True,
|
98 |
+
qk_scale=None,
|
99 |
+
dropout_rate=0.0,
|
100 |
+
attention_dropout_rate=0.0,
|
101 |
+
drop_path_rate=0.3,
|
102 |
+
patch_norm=True,
|
103 |
+
frozen_stages=-1,
|
104 |
+
depth_mode="summed_rgb_d_tokens",
|
105 |
+
initializer_range=0.02,
|
106 |
+
**kwargs
|
107 |
+
):
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
self.input_channels = input_channels
|
110 |
+
self.patch_size = patch_size
|
111 |
+
self.embed_dim = embed_dim
|
112 |
+
self.depths = depths
|
113 |
+
self.num_heads = num_heads
|
114 |
+
self.window_size = window_size
|
115 |
+
self.mlp_ratio = mlp_ratio
|
116 |
+
self.qkv_bias = qkv_bias
|
117 |
+
self.qk_scale = qk_scale
|
118 |
+
self.dropout_rate = dropout_rate
|
119 |
+
self.attention_dropout_rate = attention_dropout_rate
|
120 |
+
self.drop_path_rate = drop_path_rate
|
121 |
+
self.patch_norm = patch_norm
|
122 |
+
self.frozen_stages = frozen_stages
|
123 |
+
self.initializer_range = initializer_range
|
124 |
+
self.head_dim_in = embed_dim * 8
|
125 |
+
self.depth_mode = depth_mode
|
126 |
+
self.num_image_labels = 1000
|
127 |
+
self.num_video_labels = 400
|
128 |
+
self.num_rgbd_labels = 19
|
modelling.py
ADDED
@@ -0,0 +1,1130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Omnivore model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from functools import lru_cache, reduce
|
21 |
+
from operator import mul
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
import torch.utils.checkpoint as checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
from torch.nn import functional as F
|
31 |
+
|
32 |
+
from transformers.utils.generic import ModelOutput
|
33 |
+
|
34 |
+
from ...activations import ACT2FN
|
35 |
+
from ...modeling_outputs import BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
38 |
+
from .configuration_omnivore import OmnivoreConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
# General docstring
|
44 |
+
_CONFIG_FOR_DOC = "OmnivoreConfig"
|
45 |
+
_FEAT_EXTRACTOR_FOR_DOC = "OmniverseFeatureExtractor"
|
46 |
+
|
47 |
+
# Base docstring
|
48 |
+
_CHECKPOINT_FOR_DOC = "anugunj/omnivore"
|
49 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
50 |
+
|
51 |
+
# Image classification docstring
|
52 |
+
_IMAGE_CLASS_CHECKPOINT = "anugunj/omnivore"
|
53 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
54 |
+
|
55 |
+
OMNIVORE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
56 |
+
"anugunj/omnivore",
|
57 |
+
# See all Omnivore models at https://huggingface.co/models?filter=omnivore
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
62 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
63 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
64 |
+
def norm_cdf(x):
|
65 |
+
# Computes standard normal cumulative distribution function
|
66 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
67 |
+
|
68 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
69 |
+
warnings.warn(
|
70 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
71 |
+
"The distribution of values may be incorrect.",
|
72 |
+
stacklevel=2,
|
73 |
+
)
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
# Values are generated by using a truncated uniform distribution and
|
77 |
+
# then using the inverse CDF for the normal distribution.
|
78 |
+
# Get upper and lower cdf values
|
79 |
+
l = norm_cdf((a - mean) / std)
|
80 |
+
u = norm_cdf((b - mean) / std)
|
81 |
+
|
82 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
83 |
+
# [2l-1, 2u-1].
|
84 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
85 |
+
|
86 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
87 |
+
# standard normal
|
88 |
+
tensor.erfinv_()
|
89 |
+
|
90 |
+
# Transform to proper mean, std
|
91 |
+
tensor.mul_(std * math.sqrt(2.0))
|
92 |
+
tensor.add_(mean)
|
93 |
+
|
94 |
+
# Clamp to ensure it's in the proper range
|
95 |
+
tensor.clamp_(min=a, max=b)
|
96 |
+
return tensor
|
97 |
+
|
98 |
+
|
99 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
100 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
101 |
+
Args:
|
102 |
+
normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean},
|
103 |
+
\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for
|
104 |
+
generating the random values works best when :math:`a \leq \text{mean} \leq b`.
|
105 |
+
tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation
|
106 |
+
of the normal distribution a: the minimum cutoff value b: the maximum cutoff value
|
107 |
+
Examples:
|
108 |
+
>>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w)
|
109 |
+
"""
|
110 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
111 |
+
|
112 |
+
|
113 |
+
# Stochastic depth implementation
|
114 |
+
# Taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
115 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
116 |
+
"""
|
117 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the
|
118 |
+
DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop
|
119 |
+
Connect' is a different form of dropout in a separate paper... See discussion:
|
120 |
+
https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and
|
121 |
+
argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument.
|
122 |
+
"""
|
123 |
+
if drop_prob == 0.0 or not training:
|
124 |
+
return x
|
125 |
+
keep_prob = 1 - drop_prob
|
126 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
127 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
128 |
+
random_tensor.floor_() # binarize
|
129 |
+
output = x.div(keep_prob) * random_tensor
|
130 |
+
return output
|
131 |
+
|
132 |
+
|
133 |
+
class OmnivoreDropPath(nn.Module):
|
134 |
+
def __init__(self, drop_prob=None):
|
135 |
+
super().__init__()
|
136 |
+
self.drop_prob = drop_prob
|
137 |
+
|
138 |
+
def forward(self, x: torch.Tensor):
|
139 |
+
return drop_path(x, self.drop_prob, self.training)
|
140 |
+
|
141 |
+
|
142 |
+
class OmnivoreLayerNorm(nn.Module):
|
143 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
144 |
+
super().__init__()
|
145 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
146 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
147 |
+
self.eps = eps
|
148 |
+
self.data_format = data_format
|
149 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
150 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
151 |
+
self.normalized_shape = (normalized_shape,)
|
152 |
+
|
153 |
+
def forward(self, x: torch.Tensor):
|
154 |
+
if self.data_format == "channels_last":
|
155 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
156 |
+
elif self.data_format == "channels_first":
|
157 |
+
u = x.mean(1, keepdim=True)
|
158 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
159 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
160 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class OmnivoreIm2Video(nn.Module):
|
165 |
+
"""Convert Image into a trivial video"""
|
166 |
+
|
167 |
+
def forward(self, pixel_values):
|
168 |
+
if pixel_values.ndim == 4:
|
169 |
+
return pixel_values.unsqueeze(2)
|
170 |
+
elif pixel_values.ndim == 5:
|
171 |
+
return pixel_values
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Dimension incorrect {pixel_values.shape}")
|
174 |
+
|
175 |
+
|
176 |
+
class OmnivoreMLP(nn.Module):
|
177 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, dropout_rate=0.0, act_layer=nn.GELU):
|
178 |
+
super().__init__()
|
179 |
+
out_features = out_features or in_features
|
180 |
+
hidden_features = hidden_features or in_features
|
181 |
+
self.linear1 = nn.Linear(in_features, hidden_features)
|
182 |
+
self.activation = act_layer()
|
183 |
+
self.linear2 = nn.Linear(hidden_features, out_features)
|
184 |
+
self.drop_out = nn.Dropout(dropout_rate)
|
185 |
+
|
186 |
+
def forward(self, hidden_state):
|
187 |
+
hidden_state = self.linear1(hidden_state)
|
188 |
+
hidden_state = self.activation(hidden_state)
|
189 |
+
hidden_state = self.drop_out(hidden_state)
|
190 |
+
hidden_state = self.linear2(hidden_state)
|
191 |
+
hidden_state = self.drop_out(hidden_state)
|
192 |
+
return hidden_state
|
193 |
+
|
194 |
+
|
195 |
+
def window_partition(input_feature, window_size):
|
196 |
+
batch_size, D, height, width, channels = input_feature.shape
|
197 |
+
input_feature = input_feature.view(
|
198 |
+
batch_size,
|
199 |
+
D // window_size[0],
|
200 |
+
window_size[0],
|
201 |
+
height // window_size[1],
|
202 |
+
window_size[1],
|
203 |
+
width // window_size[2],
|
204 |
+
window_size[2],
|
205 |
+
channels,
|
206 |
+
)
|
207 |
+
windows = input_feature.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), channels)
|
208 |
+
return windows
|
209 |
+
|
210 |
+
|
211 |
+
def window_partition_image(input_feature, window_size):
|
212 |
+
batch_size, height, width, channels = input_feature.shape
|
213 |
+
input_feature = input_feature.view(
|
214 |
+
batch_size, height // window_size[1], window_size[1], width // window_size[2], window_size[2], channels
|
215 |
+
)
|
216 |
+
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[1], window_size[2], channels)
|
217 |
+
return windows
|
218 |
+
|
219 |
+
|
220 |
+
def window_reverse(windows, windows_size, batch_size, D, height, width):
|
221 |
+
input_feature = windows.view(
|
222 |
+
batch_size,
|
223 |
+
D // windows_size[0],
|
224 |
+
height // windows_size[1],
|
225 |
+
width // windows_size[2],
|
226 |
+
windows_size[0],
|
227 |
+
windows_size[1],
|
228 |
+
windows_size[2],
|
229 |
+
-1,
|
230 |
+
)
|
231 |
+
input_feature = input_feature.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(batch_size, D, height, width, -1)
|
232 |
+
return input_feature
|
233 |
+
|
234 |
+
|
235 |
+
def get_window_size(input_size, window_size, shift_size=None):
|
236 |
+
use_window_size = list(window_size)
|
237 |
+
if shift_size is not None:
|
238 |
+
use_shift_size = list(shift_size)
|
239 |
+
for i in range(len(input_size)):
|
240 |
+
if input_size[i] <= window_size[i]:
|
241 |
+
use_window_size[i] = input_size[i]
|
242 |
+
if shift_size is not None:
|
243 |
+
use_shift_size[i] = 0
|
244 |
+
|
245 |
+
if shift_size is None:
|
246 |
+
return tuple(use_window_size)
|
247 |
+
else:
|
248 |
+
return tuple(use_window_size), tuple(use_shift_size)
|
249 |
+
|
250 |
+
|
251 |
+
class OmnivoreWindowAttention3D(nn.Module):
|
252 |
+
def __init__(
|
253 |
+
self,
|
254 |
+
dim,
|
255 |
+
window_size,
|
256 |
+
num_heads,
|
257 |
+
qkv_bias=False,
|
258 |
+
qk_scale=None,
|
259 |
+
attention_dropout_rate=0.0,
|
260 |
+
projection_dropout_rate=0.0,
|
261 |
+
):
|
262 |
+
|
263 |
+
super().__init__()
|
264 |
+
self.dim = dim
|
265 |
+
self.window_size = window_size
|
266 |
+
self.num_heads = num_heads
|
267 |
+
head_dim = dim // num_heads
|
268 |
+
self.scale = qk_scale or head_dim**-0.5
|
269 |
+
|
270 |
+
# define a parameter table of relative position bias
|
271 |
+
self.relative_position_bias_table = nn.Parameter(
|
272 |
+
torch.zeros(
|
273 |
+
(2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1),
|
274 |
+
num_heads,
|
275 |
+
)
|
276 |
+
)
|
277 |
+
|
278 |
+
# get pair-wise relative position index for each token inside the window
|
279 |
+
coords_d = torch.arange(self.window_size[0])
|
280 |
+
coords_h = torch.arange(self.window_size[1])
|
281 |
+
coords_w = torch.arange(self.window_size[2])
|
282 |
+
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
|
283 |
+
coords_flatten = torch.flatten(coords, 1)
|
284 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
285 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
286 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
287 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
288 |
+
relative_coords[:, :, 2] += self.window_size[2] - 1
|
289 |
+
|
290 |
+
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
|
291 |
+
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
|
292 |
+
relative_position_index = relative_coords.sum(-1)
|
293 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
294 |
+
|
295 |
+
self.queries_keys_values = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
296 |
+
self.attention_dropout = nn.Dropout(attention_dropout_rate)
|
297 |
+
self.projection = nn.Linear(dim, dim)
|
298 |
+
self.projection_dropout = nn.Dropout(projection_dropout_rate)
|
299 |
+
|
300 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
301 |
+
self.softmax = nn.Softmax(dim=-1)
|
302 |
+
|
303 |
+
def forward(self, hidden_state, attention_mask=None):
|
304 |
+
batch_size, seq_len, channels = hidden_state.shape
|
305 |
+
queries_keys_values = (
|
306 |
+
self.queries_keys_values(hidden_state)
|
307 |
+
.reshape(batch_size, seq_len, 3, self.num_heads, channels // self.num_heads)
|
308 |
+
.permute(2, 0, 3, 1, 4)
|
309 |
+
)
|
310 |
+
queries, keys, values = queries_keys_values[0], queries_keys_values[1], queries_keys_values[2]
|
311 |
+
|
312 |
+
queries = queries * self.scale
|
313 |
+
attention = queries @ keys.transpose(-2, -1)
|
314 |
+
|
315 |
+
relative_position_bias = self.relative_position_bias_table[
|
316 |
+
self.relative_position_index[:seq_len, :seq_len].reshape(-1)
|
317 |
+
].reshape(seq_len, seq_len, -1)
|
318 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
319 |
+
attention = attention + relative_position_bias.unsqueeze(0)
|
320 |
+
|
321 |
+
if attention_mask is not None:
|
322 |
+
nW = attention_mask.shape[0]
|
323 |
+
attention = attention.view(
|
324 |
+
batch_size // nW, nW, self.num_heads, seq_len, seq_len
|
325 |
+
) + attention_mask.unsqueeze(1).unsqueeze(0)
|
326 |
+
attention = attention.view(-1, self.num_heads, seq_len, seq_len)
|
327 |
+
attention = self.softmax(attention)
|
328 |
+
else:
|
329 |
+
attention = self.softmax(attention)
|
330 |
+
|
331 |
+
attention = self.attention_dropout(attention)
|
332 |
+
|
333 |
+
hidden_state = (attention @ values).transpose(1, 2).reshape(batch_size, seq_len, channels)
|
334 |
+
hidden_state = self.projection(hidden_state)
|
335 |
+
hidden_state = self.projection_dropout(hidden_state)
|
336 |
+
return hidden_state
|
337 |
+
|
338 |
+
|
339 |
+
class OmnivoreSwinTransformer3DLayer(nn.Module):
|
340 |
+
def __init__(
|
341 |
+
self,
|
342 |
+
dim,
|
343 |
+
num_heads,
|
344 |
+
window_size=(2, 7, 7),
|
345 |
+
shift_size=(0, 0, 0),
|
346 |
+
mlp_ratio=4.0,
|
347 |
+
qkv_bias=True,
|
348 |
+
qk_scale=None,
|
349 |
+
dropout_rate=0.0,
|
350 |
+
attention_dropout_rate=0.0,
|
351 |
+
drop_path_rate=0.0,
|
352 |
+
act_layer=nn.GELU,
|
353 |
+
norm_layer=nn.LayerNorm,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
self.dim = dim
|
357 |
+
self.num_heads = num_heads
|
358 |
+
self.window_size = window_size
|
359 |
+
self.shift_size = shift_size
|
360 |
+
self.mlp_ratio = mlp_ratio
|
361 |
+
|
362 |
+
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
|
363 |
+
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
|
364 |
+
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
|
365 |
+
|
366 |
+
self.norm1 = norm_layer(dim)
|
367 |
+
self.attention = OmnivoreWindowAttention3D(
|
368 |
+
dim,
|
369 |
+
window_size=self.window_size,
|
370 |
+
num_heads=num_heads,
|
371 |
+
qkv_bias=qkv_bias,
|
372 |
+
qk_scale=qk_scale,
|
373 |
+
attention_dropout_rate=attention_dropout_rate,
|
374 |
+
projection_dropout_rate=dropout_rate,
|
375 |
+
)
|
376 |
+
|
377 |
+
self.drop_path = OmnivoreDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
378 |
+
self.norm2 = norm_layer(dim)
|
379 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
380 |
+
self.mlp = OmnivoreMLP(
|
381 |
+
in_features=dim, hidden_features=mlp_hidden_dim, dropout_rate=dropout_rate, act_layer=act_layer
|
382 |
+
)
|
383 |
+
|
384 |
+
def forward_before(self, hidden_state, attention_mask):
|
385 |
+
batch_size, D, height, width, channels = hidden_state.shape
|
386 |
+
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
|
387 |
+
|
388 |
+
hidden_state = self.norm1(hidden_state)
|
389 |
+
# pad feature maps to multiples of window size
|
390 |
+
pad_l = pad_t = pad_d0 = 0
|
391 |
+
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
|
392 |
+
pad_b = (window_size[1] - height % window_size[1]) % window_size[1]
|
393 |
+
pad_r = (window_size[2] - width % window_size[2]) % window_size[2]
|
394 |
+
hidden_state = F.pad(hidden_state, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
|
395 |
+
_, Dp, Hp, Wp, _ = hidden_state.shape
|
396 |
+
# cyclic shift
|
397 |
+
if any(i > 0 for i in shift_size):
|
398 |
+
shifted_hidden_state = torch.roll(
|
399 |
+
hidden_state, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)
|
400 |
+
)
|
401 |
+
attention_mask = attention_mask
|
402 |
+
else:
|
403 |
+
shifted_hidden_state = hidden_state
|
404 |
+
attention_mask = None
|
405 |
+
# partition windows
|
406 |
+
hidden_state_windows = window_partition(shifted_hidden_state, window_size)
|
407 |
+
# W-MSA/SW-MSA
|
408 |
+
attention_windows = self.attention(hidden_state_windows, attention_mask=attention_mask)
|
409 |
+
# merge windows
|
410 |
+
attention_windows = attention_windows.view(-1, *(window_size + (channels,)))
|
411 |
+
shifted_hidden_state = window_reverse(attention_windows, window_size, batch_size, Dp, Hp, Wp)
|
412 |
+
# reverse cyclic shift
|
413 |
+
if any(i > 0 for i in shift_size):
|
414 |
+
hidden_state = torch.roll(
|
415 |
+
shifted_hidden_state, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
hidden_state = shifted_hidden_state
|
419 |
+
|
420 |
+
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
|
421 |
+
hidden_state = hidden_state[:, :D, :height, :width, :].contiguous()
|
422 |
+
return hidden_state
|
423 |
+
|
424 |
+
def forward_after(self, hidden_state):
|
425 |
+
hidden_state = self.norm2(hidden_state)
|
426 |
+
hidden_state = self.mlp(hidden_state)
|
427 |
+
hidden_state = self.drop_path(hidden_state)
|
428 |
+
return hidden_state
|
429 |
+
|
430 |
+
def forward(self, hidden_state, mask_matrix, use_checkpoint=False):
|
431 |
+
shortcut = hidden_state
|
432 |
+
if use_checkpoint:
|
433 |
+
hidden_state = checkpoint.checkpoint(self.forward_before, hidden_state, mask_matrix)
|
434 |
+
else:
|
435 |
+
hidden_state = self.forward_before(hidden_state, mask_matrix)
|
436 |
+
hidden_state = shortcut + self.drop_path(hidden_state)
|
437 |
+
|
438 |
+
if use_checkpoint:
|
439 |
+
hidden_state = hidden_state + checkpoint.checkpoint(self.forward_after, hidden_state)
|
440 |
+
else:
|
441 |
+
hidden_state = hidden_state + self.forward_after(hidden_state)
|
442 |
+
|
443 |
+
return hidden_state
|
444 |
+
|
445 |
+
|
446 |
+
class OmnivorePatchMerging(nn.Module):
|
447 |
+
"""
|
448 |
+
Args:
|
449 |
+
Patch Merging Layer
|
450 |
+
dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*): Normalization layer. Default:
|
451 |
+
`nn.LayerNorm`
|
452 |
+
"""
|
453 |
+
|
454 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
455 |
+
super().__init__()
|
456 |
+
self.dim = dim
|
457 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
458 |
+
self.norm = norm_layer(4 * dim)
|
459 |
+
|
460 |
+
def forward(self, hidden_state, height=None, width=None):
|
461 |
+
if height is None:
|
462 |
+
batch_size, D, height, width, channels = hidden_state.shape
|
463 |
+
|
464 |
+
# padding
|
465 |
+
pad_input = (height % 2 == 1) or (width % 2 == 1)
|
466 |
+
if pad_input:
|
467 |
+
hidden_state = F.pad(hidden_state, (0, 0, 0, width % 2, 0, height % 2))
|
468 |
+
|
469 |
+
hidden_state0 = hidden_state[:, :, 0::2, 0::2, :]
|
470 |
+
hidden_state1 = hidden_state[:, :, 1::2, 0::2, :]
|
471 |
+
hidden_state2 = hidden_state[:, :, 0::2, 1::2, :]
|
472 |
+
hidden_state3 = hidden_state[:, :, 1::2, 1::2, :]
|
473 |
+
hidden_state = torch.cat([hidden_state0, hidden_state1, hidden_state2, hidden_state3], -1)
|
474 |
+
|
475 |
+
hidden_state = self.norm(hidden_state)
|
476 |
+
hidden_state = self.reduction(hidden_state)
|
477 |
+
|
478 |
+
return hidden_state
|
479 |
+
|
480 |
+
|
481 |
+
@lru_cache()
|
482 |
+
def compute_mask(D, height, width, window_size, shift_size, device):
|
483 |
+
img_mask = torch.zeros((1, D, height, width, 1), device=device) # 1 Dp Hp Wp 1
|
484 |
+
cnt = 0
|
485 |
+
for d in (
|
486 |
+
slice(-window_size[0]),
|
487 |
+
slice(-window_size[0], -shift_size[0]),
|
488 |
+
slice(-shift_size[0], None),
|
489 |
+
):
|
490 |
+
for h in (
|
491 |
+
slice(-window_size[1]),
|
492 |
+
slice(-window_size[1], -shift_size[1]),
|
493 |
+
slice(-shift_size[1], None),
|
494 |
+
):
|
495 |
+
for w in (
|
496 |
+
slice(-window_size[2]),
|
497 |
+
slice(-window_size[2], -shift_size[2]),
|
498 |
+
slice(-shift_size[2], None),
|
499 |
+
):
|
500 |
+
img_mask[:, d, h, w, :] = cnt
|
501 |
+
cnt += 1
|
502 |
+
mask_windows = window_partition(img_mask, window_size)
|
503 |
+
mask_windows = mask_windows.squeeze(-1)
|
504 |
+
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
505 |
+
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
|
506 |
+
attention_mask == 0, float(0.0)
|
507 |
+
)
|
508 |
+
return attention_mask
|
509 |
+
|
510 |
+
|
511 |
+
class OmnivoreSwinTransformerStage(nn.Module):
|
512 |
+
def __init__(
|
513 |
+
self,
|
514 |
+
dim,
|
515 |
+
depth,
|
516 |
+
num_heads,
|
517 |
+
window_size=(1, 7, 7),
|
518 |
+
mlp_ratio=4.0,
|
519 |
+
qkv_bias=False,
|
520 |
+
qk_scale=None,
|
521 |
+
dropout_rate=0.0,
|
522 |
+
attention_dropout_rate=0.0,
|
523 |
+
drop_path_rate=0.0,
|
524 |
+
norm_layer=nn.LayerNorm,
|
525 |
+
downsample=None,
|
526 |
+
):
|
527 |
+
super().__init__()
|
528 |
+
self.window_size = window_size
|
529 |
+
self.shift_size = tuple(i // 2 for i in window_size)
|
530 |
+
self.depth = depth
|
531 |
+
|
532 |
+
# build layers
|
533 |
+
self.layers = nn.ModuleList(
|
534 |
+
[
|
535 |
+
OmnivoreSwinTransformer3DLayer(
|
536 |
+
dim=dim,
|
537 |
+
num_heads=num_heads,
|
538 |
+
window_size=window_size,
|
539 |
+
shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size,
|
540 |
+
mlp_ratio=mlp_ratio,
|
541 |
+
qkv_bias=qkv_bias,
|
542 |
+
qk_scale=qk_scale,
|
543 |
+
dropout_rate=dropout_rate,
|
544 |
+
attention_dropout_rate=attention_dropout_rate,
|
545 |
+
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
|
546 |
+
norm_layer=norm_layer,
|
547 |
+
)
|
548 |
+
for i in range(depth)
|
549 |
+
]
|
550 |
+
)
|
551 |
+
|
552 |
+
self.downsample = downsample
|
553 |
+
if self.downsample is not None:
|
554 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
555 |
+
|
556 |
+
def forward(self, hidden_state, use_checkpoint=False, height=None, width=None, use_seg=False):
|
557 |
+
if use_seg:
|
558 |
+
return self.forward_seg(hidden_state, height, width)
|
559 |
+
batch_size, channels, D, height, width = hidden_state.shape
|
560 |
+
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
|
561 |
+
hidden_state = hidden_state.permute(0, 2, 3, 4, 1)
|
562 |
+
|
563 |
+
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
|
564 |
+
Hp = int(np.ceil(height / window_size[1])) * window_size[1]
|
565 |
+
Wp = int(np.ceil(width / window_size[2])) * window_size[2]
|
566 |
+
|
567 |
+
attention_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, hidden_state.device)
|
568 |
+
|
569 |
+
for layer in self.layers:
|
570 |
+
hidden_state = layer(hidden_state, attention_mask, use_checkpoint=use_checkpoint)
|
571 |
+
hidden_state = hidden_state.view(batch_size, D, height, width, -1)
|
572 |
+
|
573 |
+
if self.downsample is not None:
|
574 |
+
hidden_state = self.downsample(hidden_state)
|
575 |
+
|
576 |
+
hidden_state = hidden_state.permute(0, 4, 1, 2, 3)
|
577 |
+
|
578 |
+
return hidden_state
|
579 |
+
|
580 |
+
def forward_seg(self, hidden_state, height, width):
|
581 |
+
|
582 |
+
Hp = int(np.ceil(height / self.window_size[1])) * self.window_size[1]
|
583 |
+
Wp = int(np.ceil(width / self.window_size[2])) * self.window_size[2]
|
584 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=hidden_state.device) # 1 Hp Wp 1
|
585 |
+
h_slices = (
|
586 |
+
slice(0, -self.window_size[1]),
|
587 |
+
slice(-self.window_size[1], -self.shift_size[1]),
|
588 |
+
slice(-self.shift_size[1], None),
|
589 |
+
)
|
590 |
+
w_slices = (
|
591 |
+
slice(0, -self.window_size[2]),
|
592 |
+
slice(-self.window_size[2], -self.shift_size[2]),
|
593 |
+
slice(-self.shift_size[2], None),
|
594 |
+
)
|
595 |
+
cnt = 0
|
596 |
+
for h in h_slices:
|
597 |
+
for w in w_slices:
|
598 |
+
img_mask[:, h, w, :] = cnt
|
599 |
+
cnt += 1
|
600 |
+
|
601 |
+
mask_windows = window_partition_image(img_mask, self.window_size) # nW, window_size, window_size, 1
|
602 |
+
mask_windows = mask_windows.view(-1, self.window_size[1] * self.window_size[2])
|
603 |
+
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
604 |
+
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
|
605 |
+
attention_mask == 0, float(0.0)
|
606 |
+
)
|
607 |
+
|
608 |
+
for layer in self.layers:
|
609 |
+
layer.height, layer.width = height, width
|
610 |
+
if hidden_state.ndim == 4:
|
611 |
+
batch_size, D, channels, seq_len = hidden_state.shape
|
612 |
+
assert seq_len == height * width, "input feature has wrong size"
|
613 |
+
hidden_state = hidden_state.reshape(batch_size, D, channels, height, width)
|
614 |
+
hidden_state = hidden_state.permute(0, 1, 3, 4, 2)
|
615 |
+
assert hidden_state.shape[2] == height
|
616 |
+
assert hidden_state.shape[3] == width
|
617 |
+
hidden_state = layer(hidden_state, attention_mask)
|
618 |
+
if self.downsample is not None:
|
619 |
+
x_down = self.downsample(hidden_state, height, width)
|
620 |
+
Wh, Ww = (height + 1) // 2, (width + 1) // 2
|
621 |
+
return hidden_state, height, width, x_down, Wh, Ww
|
622 |
+
else:
|
623 |
+
return hidden_state, height, width, hidden_state, height, width
|
624 |
+
|
625 |
+
|
626 |
+
class OmnivorePatchEmbeddings3D(nn.Module):
|
627 |
+
"""Video to Patch Embedding"""
|
628 |
+
|
629 |
+
def __init__(
|
630 |
+
self,
|
631 |
+
patch_size=(2, 4, 4),
|
632 |
+
input_channels=3,
|
633 |
+
embed_dim=96,
|
634 |
+
norm_layer=None,
|
635 |
+
additional_variable_channels=None,
|
636 |
+
):
|
637 |
+
super().__init__()
|
638 |
+
self.patch_size = patch_size
|
639 |
+
|
640 |
+
self.input_channels = input_channels
|
641 |
+
self.embed_dim = embed_dim
|
642 |
+
self.additional_variable_channels = additional_variable_channels
|
643 |
+
|
644 |
+
self.projection = nn.Conv3d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
645 |
+
if additional_variable_channels:
|
646 |
+
# we create var_proj separately from proj
|
647 |
+
# this makes it convenient to ignore var_proj on downstream tasks
|
648 |
+
# where we only use RGB
|
649 |
+
self.var_projection = [
|
650 |
+
nn.Conv3d(x, embed_dim, kernel_size=patch_size, stride=patch_size)
|
651 |
+
for x in additional_variable_channels
|
652 |
+
]
|
653 |
+
self.var_projection = nn.ModuleList(self.var_projection)
|
654 |
+
|
655 |
+
if norm_layer is not None:
|
656 |
+
self.norm = norm_layer(embed_dim)
|
657 |
+
else:
|
658 |
+
self.norm = None
|
659 |
+
|
660 |
+
def run_variable_channel_forward(self, hidden_state):
|
661 |
+
sidx = 0
|
662 |
+
out = None
|
663 |
+
for idx in range(len(self.additional_variable_channels)):
|
664 |
+
eidx = sidx + self.additional_variable_channels[idx]
|
665 |
+
c_out = self.var_projection[idx](hidden_state[:, sidx:eidx, ...])
|
666 |
+
if idx == 0:
|
667 |
+
out = c_out
|
668 |
+
else:
|
669 |
+
out += c_out
|
670 |
+
sidx = eidx
|
671 |
+
return out
|
672 |
+
|
673 |
+
def forward(self, hidden_state):
|
674 |
+
_, _, D, height, width = hidden_state.size()
|
675 |
+
if width % self.patch_size[2] != 0:
|
676 |
+
hidden_state = F.pad(hidden_state, (0, self.patch_size[2] - width % self.patch_size[2]))
|
677 |
+
if height % self.patch_size[1] != 0:
|
678 |
+
hidden_state = F.pad(hidden_state, (0, 0, 0, self.patch_size[1] - height % self.patch_size[1]))
|
679 |
+
if D % self.patch_size[0] != 0:
|
680 |
+
hidden_state = F.pad(hidden_state, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
|
681 |
+
|
682 |
+
if self.additional_variable_channels:
|
683 |
+
hidden_state_rgb = hidden_state[:, :3, ...]
|
684 |
+
hidden_state_rem = hidden_state[:, 3:, ...]
|
685 |
+
hidden_state_rgb = self.projection(hidden_state_rgb)
|
686 |
+
if hidden_state.shape[1] > 3:
|
687 |
+
hidden_state_rem = self.run_variable_channel_forward(hidden_state_rem)
|
688 |
+
hidden_state = hidden_state_rgb + hidden_state_rem
|
689 |
+
else:
|
690 |
+
hidden_state = hidden_state_rgb
|
691 |
+
else:
|
692 |
+
hidden_state = self.projection(hidden_state) # B C D Wh Ww
|
693 |
+
if self.norm is not None:
|
694 |
+
D, Wh, Ww = hidden_state.size(2), hidden_state.size(3), hidden_state.size(4)
|
695 |
+
hidden_state = hidden_state.flatten(2).transpose(1, 2)
|
696 |
+
hidden_state = self.norm(hidden_state)
|
697 |
+
hidden_state = hidden_state.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
698 |
+
|
699 |
+
return hidden_state
|
700 |
+
|
701 |
+
|
702 |
+
class OmnivoreSwinTransformer3DModel(nn.Module):
|
703 |
+
def __init__(self, config):
|
704 |
+
super().__init__()
|
705 |
+
self.config = config
|
706 |
+
self.im2vid = OmnivoreIm2Video()
|
707 |
+
self.num_stages = len(self.config.depths)
|
708 |
+
self.patch_size = self.config.patch_size
|
709 |
+
self.input_channels = self.config.input_channels
|
710 |
+
self.embed_dim = self.config.embed_dim
|
711 |
+
self.depths = self.config.depths
|
712 |
+
self.num_heads = self.config.num_heads
|
713 |
+
self.window_size = self.config.window_size
|
714 |
+
self.mlp_ratio = self.config.mlp_ratio
|
715 |
+
self.qkv_bias = self.config.qkv_bias
|
716 |
+
self.qk_scale = self.config.qk_scale
|
717 |
+
self.dropout_rate = self.config.dropout_rate
|
718 |
+
self.attention_dropout_rate = self.config.attention_dropout_rate
|
719 |
+
self.drop_path_rate = self.config.drop_path_rate
|
720 |
+
self.norm_layer = nn.LayerNorm
|
721 |
+
self.patch_norm = self.config.patch_norm
|
722 |
+
self.frozen_stages = self.config.frozen_stages
|
723 |
+
self.depth_patch_embed_separate_params = True
|
724 |
+
self.depth_mode = self.config.depth_mode
|
725 |
+
depth_chans = None
|
726 |
+
assert self.input_channels == 3, "Only 3 channels supported"
|
727 |
+
|
728 |
+
# split image into non-overlapping patches
|
729 |
+
self.patch_embed = OmnivorePatchEmbeddings3D(
|
730 |
+
patch_size=self.patch_size,
|
731 |
+
input_channels=self.input_channels,
|
732 |
+
embed_dim=self.embed_dim,
|
733 |
+
norm_layer=self.norm_layer if self.patch_norm else None,
|
734 |
+
)
|
735 |
+
|
736 |
+
if self.depth_mode is not None:
|
737 |
+
msg = f"Using depth mode {self.depth_mode}"
|
738 |
+
logger.info(msg)
|
739 |
+
assert self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens", "rgbd"]
|
740 |
+
if self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens"]:
|
741 |
+
depth_chans = 1
|
742 |
+
assert self.depth_patch_embed_separate_params, "separate tokenization needs separate parameters"
|
743 |
+
if self.depth_mode == "separate_d_tokens":
|
744 |
+
raise NotImplementedError()
|
745 |
+
else:
|
746 |
+
assert self.depth_mode == "rgbd"
|
747 |
+
depth_chans = 4
|
748 |
+
|
749 |
+
self.depth_patch_embed_separate_params = self.depth_patch_embed_separate_params
|
750 |
+
|
751 |
+
if self.depth_patch_embed_separate_params:
|
752 |
+
self.depth_patch_embed = OmnivorePatchEmbeddings3D(
|
753 |
+
patch_size=self.patch_size,
|
754 |
+
input_channels=depth_chans,
|
755 |
+
embed_dim=self.embed_dim,
|
756 |
+
norm_layer=self.norm_layer if self.patch_norm else None,
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
del self.patch_embed
|
760 |
+
assert depth_chans == 4
|
761 |
+
logger.info("Certain channels of patch projection may not be used in forward pass")
|
762 |
+
logger.info("Make sure config.DISTRIBUTED.FIND_UNUSED_PARAMETERS is set to True")
|
763 |
+
self.patch_embed = OmnivorePatchEmbeddings3D(
|
764 |
+
patch_size=self.patch_size,
|
765 |
+
input_channels=3,
|
766 |
+
embed_dim=self.embed_dim,
|
767 |
+
additional_variable_channels=[1],
|
768 |
+
norm_layer=self.norm_layer if self.patch_norm else None,
|
769 |
+
)
|
770 |
+
|
771 |
+
self.pos_drop = nn.Dropout(p=self.dropout_rate)
|
772 |
+
|
773 |
+
# stochastic depth
|
774 |
+
dpr = [
|
775 |
+
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
|
776 |
+
] # stochastic depth decay rule
|
777 |
+
|
778 |
+
# build stages
|
779 |
+
self.stages = nn.ModuleList()
|
780 |
+
for stage in range(self.num_stages):
|
781 |
+
stage_module = OmnivoreSwinTransformerStage(
|
782 |
+
dim=int(self.embed_dim * 2**stage),
|
783 |
+
depth=self.depths[stage],
|
784 |
+
num_heads=self.num_heads[stage],
|
785 |
+
window_size=self.window_size,
|
786 |
+
mlp_ratio=self.mlp_ratio,
|
787 |
+
qkv_bias=self.qkv_bias,
|
788 |
+
qk_scale=self.qk_scale,
|
789 |
+
dropout_rate=self.dropout_rate,
|
790 |
+
attention_dropout_rate=self.attention_dropout_rate,
|
791 |
+
drop_path_rate=dpr[sum(self.depths[:stage]) : sum(self.depths[: stage + 1])],
|
792 |
+
norm_layer=self.norm_layer,
|
793 |
+
downsample=OmnivorePatchMerging if stage < self.num_stages - 1 else None,
|
794 |
+
)
|
795 |
+
self.stages.append(stage_module)
|
796 |
+
|
797 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_stages - 1))
|
798 |
+
self.norm = self.norm_layer(self.num_features)
|
799 |
+
self._freeze_stages()
|
800 |
+
|
801 |
+
def _freeze_stages(self):
|
802 |
+
if self.frozen_stages >= 0:
|
803 |
+
self.patch_embed.eval()
|
804 |
+
for param in self.patch_embed.parameters():
|
805 |
+
param.requires_grad = False
|
806 |
+
|
807 |
+
if self.frozen_stages >= 1:
|
808 |
+
self.pos_drop.eval()
|
809 |
+
for i in range(0, self.frozen_stages):
|
810 |
+
m = self.layers[i]
|
811 |
+
m.eval()
|
812 |
+
for param in m.parameters():
|
813 |
+
param.requires_grad = False
|
814 |
+
|
815 |
+
def _apply_norm(self, x):
|
816 |
+
x = x.permute(0, 2, 3, 4, 1)
|
817 |
+
x = self.norm(x)
|
818 |
+
x = x.permute(0, 4, 1, 2, 3)
|
819 |
+
return x
|
820 |
+
|
821 |
+
def forward_intermediate_features(self, stage_outputs, out_feat_keys):
|
822 |
+
"""
|
823 |
+
Inputs
|
824 |
+
- stage_outputs: list of features without self.norm() applied to them
|
825 |
+
- out_feat_keys: list of feature names (str)
|
826 |
+
specified as "stage<int>" for feature with norm or "interim<int>" for feature without norm
|
827 |
+
"""
|
828 |
+
out_features = []
|
829 |
+
for key in out_feat_keys:
|
830 |
+
if key.startswith("stage"):
|
831 |
+
rep = "stage"
|
832 |
+
elif key.startswith("interim"):
|
833 |
+
rep = "interim"
|
834 |
+
else:
|
835 |
+
raise ValueError(f"Invalid key {key}")
|
836 |
+
idx = int(key.replace(rep, ""))
|
837 |
+
feat = stage_outputs[idx]
|
838 |
+
if rep == "stage":
|
839 |
+
feat = self._apply_norm(feat)
|
840 |
+
out_features.append(feat)
|
841 |
+
return out_features
|
842 |
+
|
843 |
+
def get_patch_embedding(self, hidden_state):
|
844 |
+
assert hidden_state.ndim == 5
|
845 |
+
has_depth = hidden_state.shape[1] == 4
|
846 |
+
|
847 |
+
if has_depth:
|
848 |
+
if self.depth_mode in ["summed_rgb_d_tokens"]:
|
849 |
+
hidden_state_rgb = hidden_state[:, :3, ...]
|
850 |
+
hidden_state_d = hidden_state[:, 3:, ...]
|
851 |
+
hidden_state_d = self.depth_patch_embed(hidden_state_d)
|
852 |
+
hidden_state_rgb = self.patch_embed(hidden_state_rgb)
|
853 |
+
# sum the two sets of tokens
|
854 |
+
hidden_state = hidden_state_rgb + hidden_state_d
|
855 |
+
elif self.depth_mode == "rgbd":
|
856 |
+
if self.depth_patch_embed_separate_params:
|
857 |
+
hidden_state = self.depth_patch_embed(hidden_state)
|
858 |
+
else:
|
859 |
+
hidden_state = self.patch_embed(hidden_state)
|
860 |
+
else:
|
861 |
+
logger.info("Depth mode %s not supported" % self.depth_mode)
|
862 |
+
raise NotImplementedError()
|
863 |
+
else:
|
864 |
+
hidden_state = self.patch_embed(hidden_state)
|
865 |
+
return hidden_state
|
866 |
+
|
867 |
+
def forward(
|
868 |
+
self, hidden_state, out_feat_keys=None, use_checkpoint=False, output_hidden_states=False, return_dict=True
|
869 |
+
):
|
870 |
+
all_hidden_states = () if output_hidden_states else None
|
871 |
+
hidden_state = self.im2vid(hidden_state)
|
872 |
+
hidden_state = self.get_patch_embedding(hidden_state)
|
873 |
+
hidden_state = self.pos_drop(hidden_state)
|
874 |
+
|
875 |
+
stage_outputs = []
|
876 |
+
|
877 |
+
for stage in self.stages:
|
878 |
+
hidden_state = stage(hidden_state.contiguous(), use_checkpoint=use_checkpoint)
|
879 |
+
if output_hidden_states:
|
880 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
881 |
+
stage_outputs.append(hidden_state)
|
882 |
+
|
883 |
+
if out_feat_keys is not None and len(out_feat_keys) > 0:
|
884 |
+
final_hidden_state = self.forward_intermediate_features(stage_outputs, out_feat_keys)
|
885 |
+
else:
|
886 |
+
hidden_state = self._apply_norm(hidden_state)
|
887 |
+
# Mean over the spatiotemporal dimensions
|
888 |
+
hidden_state = torch.mean(hidden_state, [-3, -2, -1])
|
889 |
+
|
890 |
+
final_hidden_state = hidden_state
|
891 |
+
|
892 |
+
if not return_dict:
|
893 |
+
return tuple(v for v in [final_hidden_state, all_hidden_states] if v is not None)
|
894 |
+
return BaseModelOutputWithNoAttention(last_hidden_state=final_hidden_state, hidden_states=all_hidden_states)
|
895 |
+
|
896 |
+
def train(self, mode=True):
|
897 |
+
"""Convert the model into training mode while keep layers freezed."""
|
898 |
+
super(OmnivoreSwinTransformer3DModel, self).train(mode)
|
899 |
+
self._freeze_stages()
|
900 |
+
|
901 |
+
|
902 |
+
class OmnivoreImageClassificationHead(nn.Module):
|
903 |
+
def __init__(self, in_features=1024, out_features=1000, bias=True):
|
904 |
+
super().__init__()
|
905 |
+
self.image_head = nn.Linear(in_features, out_features, bias)
|
906 |
+
|
907 |
+
def forward(self, hidden_state):
|
908 |
+
logits = self.image_head(hidden_state)
|
909 |
+
return logits
|
910 |
+
|
911 |
+
|
912 |
+
class OmnivoreVideoClassificationHead(nn.Module):
|
913 |
+
def __init__(self, in_features=1024, out_features=400, bias=True):
|
914 |
+
super().__init__()
|
915 |
+
self.video_head = nn.Linear(in_features, out_features, bias)
|
916 |
+
self.dropout = nn.Dropout(p=0.5)
|
917 |
+
|
918 |
+
def forward(self, hidden_state):
|
919 |
+
logits = self.video_head(hidden_state)
|
920 |
+
logits = self.dropout(logits)
|
921 |
+
return logits
|
922 |
+
|
923 |
+
|
924 |
+
class OmnivoreRGBDClassificationHead(nn.Module):
|
925 |
+
def __init__(self, in_features=1024, out_features=19, bias=True):
|
926 |
+
super().__init__()
|
927 |
+
self.rgbd_head = nn.Linear(in_features, out_features, bias)
|
928 |
+
|
929 |
+
def forward(self, hidden_state):
|
930 |
+
logits = self.rgbd_head(hidden_state)
|
931 |
+
return logits
|
932 |
+
|
933 |
+
|
934 |
+
class OmnivorePreTrainedModel(PreTrainedModel):
|
935 |
+
"""
|
936 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
937 |
+
models.
|
938 |
+
"""
|
939 |
+
|
940 |
+
config_class = OmnivoreConfig
|
941 |
+
base_model_prefix = "omnivore"
|
942 |
+
main_input_name = "pixel_values"
|
943 |
+
supports_gradient_checkpointing = True
|
944 |
+
|
945 |
+
def _init_weights(self, module):
|
946 |
+
"""Initialize the weights"""
|
947 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
948 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
949 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
950 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
951 |
+
if module.bias is not None:
|
952 |
+
module.bias.data.zero_()
|
953 |
+
elif isinstance(module, nn.LayerNorm):
|
954 |
+
module.bias.data.zero_()
|
955 |
+
module.weight.data.fill_(1.0)
|
956 |
+
|
957 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
958 |
+
if isinstance(module, OmnivoreModel):
|
959 |
+
module.gradient_checkpointing = value
|
960 |
+
|
961 |
+
|
962 |
+
OMNIVORE_START_DOCSTRING = r"""
|
963 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
964 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
965 |
+
behavior.
|
966 |
+
|
967 |
+
Parameters:
|
968 |
+
config ([`OmnivoreConfig`]): Model configuration class with all the parameters of the model.
|
969 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
970 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
971 |
+
"""
|
972 |
+
|
973 |
+
OMNIVORE_INPUTS_DOCSTRING = r"""
|
974 |
+
Args:
|
975 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
976 |
+
Pixel values. Pixel values can be obtained using [`AutoFeatureExtractor`]. See
|
977 |
+
[`AutoFeatureExtractor.__call__`] for details.
|
978 |
+
|
979 |
+
output_hidden_states (`bool`, *optional*):
|
980 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
981 |
+
more detail.
|
982 |
+
return_dict (`bool`, *optional*):
|
983 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
984 |
+
"""
|
985 |
+
|
986 |
+
|
987 |
+
@add_start_docstrings(
|
988 |
+
"The bare Omnivore model outputting raw features without any specific head on top.",
|
989 |
+
OMNIVORE_START_DOCSTRING,
|
990 |
+
)
|
991 |
+
class OmnivoreModel(OmnivorePreTrainedModel):
|
992 |
+
def __init__(self, config):
|
993 |
+
super().__init__(config)
|
994 |
+
self.config = config
|
995 |
+
self.model = OmnivoreSwinTransformer3DModel(config)
|
996 |
+
self.post_init()
|
997 |
+
|
998 |
+
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
|
999 |
+
@add_code_sample_docstrings(
|
1000 |
+
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
1001 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1002 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
1003 |
+
config_class=_CONFIG_FOR_DOC,
|
1004 |
+
modality="vision",
|
1005 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1006 |
+
)
|
1007 |
+
def forward(
|
1008 |
+
self,
|
1009 |
+
pixel_values: torch.FloatTensor = None,
|
1010 |
+
output_hidden_states: Optional[bool] = None,
|
1011 |
+
return_dict: Optional[bool] = None,
|
1012 |
+
):
|
1013 |
+
output_hidden_states = (
|
1014 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1015 |
+
)
|
1016 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1017 |
+
|
1018 |
+
if pixel_values is None:
|
1019 |
+
raise ValueError("You have to specify pixel_values")
|
1020 |
+
|
1021 |
+
outputs = self.model(pixel_values)
|
1022 |
+
last_hidden_state = outputs[0]
|
1023 |
+
# global average pooling, (N, C, D, H, W) -> (N, C)
|
1024 |
+
pooled_output = last_hidden_state.mean([-1])
|
1025 |
+
|
1026 |
+
if not return_dict:
|
1027 |
+
return (last_hidden_state, pooled_output) + outputs[1:]
|
1028 |
+
|
1029 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
1030 |
+
last_hidden_state=last_hidden_state,
|
1031 |
+
pooler_output=pooled_output,
|
1032 |
+
hidden_states=outputs.hidden_states,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
@add_start_docstrings(
|
1037 |
+
"""
|
1038 |
+
Omnivore Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
1039 |
+
ImageNet.
|
1040 |
+
""",
|
1041 |
+
OMNIVORE_START_DOCSTRING,
|
1042 |
+
)
|
1043 |
+
class OmnivoreForImageClassification(OmnivorePreTrainedModel):
|
1044 |
+
def __init__(self, config):
|
1045 |
+
super().__init__(config)
|
1046 |
+
|
1047 |
+
self.num_image_labels = config.num_image_labels or config.num_labels
|
1048 |
+
self.num_video_labels = config.num_video_labels or config.num_labels
|
1049 |
+
self.num_rgbd_labels = config.num_rgbd_labels or config.num_labels
|
1050 |
+
self.omnivore = OmnivoreModel(config)
|
1051 |
+
self.image_classifier = OmnivoreImageClassificationHead(config.head_dim_in, self.num_image_labels)
|
1052 |
+
self.rgbd_classifier = OmnivoreRGBDClassificationHead(config.head_dim_in, self.num_rgbd_labels)
|
1053 |
+
self.video_classifier = OmnivoreVideoClassificationHead(config.head_dim_in, self.num_video_labels)
|
1054 |
+
# Initialize weights and apply final processing
|
1055 |
+
self.post_init()
|
1056 |
+
|
1057 |
+
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
|
1058 |
+
@add_code_sample_docstrings(
|
1059 |
+
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
1060 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1061 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
1062 |
+
config_class=_CONFIG_FOR_DOC,
|
1063 |
+
modality="vision",
|
1064 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1065 |
+
)
|
1066 |
+
def forward(
|
1067 |
+
self,
|
1068 |
+
pixel_values: torch.FloatTensor = None,
|
1069 |
+
pixel_input_type: str = None,
|
1070 |
+
labels: Optional[torch.LongTensor] = None,
|
1071 |
+
output_hidden_states: Optional[bool] = None,
|
1072 |
+
return_dict: Optional[bool] = None,
|
1073 |
+
):
|
1074 |
+
r"""
|
1075 |
+
pixel_input_type (`str`):
|
1076 |
+
Which classification head to use for the classification of given pixel_values
|
1077 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1078 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1079 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1080 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1081 |
+
|
1082 |
+
Returns:
|
1083 |
+
|
1084 |
+
```"""
|
1085 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1086 |
+
|
1087 |
+
outputs = self.omnivore(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
1088 |
+
sequence_output = outputs[0]
|
1089 |
+
|
1090 |
+
logits = None
|
1091 |
+
if pixel_input_type == "image":
|
1092 |
+
logits = self.image_classifier(sequence_output)
|
1093 |
+
|
1094 |
+
if pixel_input_type == "video":
|
1095 |
+
logits = self.video_classifier(sequence_output)
|
1096 |
+
|
1097 |
+
if pixel_input_type == "rgbd":
|
1098 |
+
logits = self.rgbd_classifier(sequence_output)
|
1099 |
+
|
1100 |
+
loss = None
|
1101 |
+
if labels is not None:
|
1102 |
+
if self.config.problem_type is None:
|
1103 |
+
if self.num_labels == 1:
|
1104 |
+
self.config.problem_type = "regression"
|
1105 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1106 |
+
self.config.problem_type = "single_label_classification"
|
1107 |
+
else:
|
1108 |
+
self.config.problem_type = "multi_label_classification"
|
1109 |
+
|
1110 |
+
if self.config.problem_type == "regression":
|
1111 |
+
loss_fct = MSELoss()
|
1112 |
+
if self.num_labels == 1:
|
1113 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1114 |
+
else:
|
1115 |
+
loss = loss_fct(logits, labels)
|
1116 |
+
elif self.config.problem_type == "single_label_classification":
|
1117 |
+
loss_fct = CrossEntropyLoss()
|
1118 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1119 |
+
elif self.config.problem_type == "multi_label_classification":
|
1120 |
+
loss_fct = BCEWithLogitsLoss()
|
1121 |
+
loss = loss_fct(logits, labels)
|
1122 |
+
if not return_dict:
|
1123 |
+
output = (logits,) + outputs[2:]
|
1124 |
+
return ((loss,) + output) if loss is not None else output
|
1125 |
+
|
1126 |
+
return ImageClassifierOutputWithNoAttention(
|
1127 |
+
loss=loss,
|
1128 |
+
logits=logits,
|
1129 |
+
hidden_states=outputs.hidden_states,
|
1130 |
+
)
|