File size: 3,719 Bytes
ac42681 543f047 f788b0f ac42681 f788b0f 543f047 ac42681 f788b0f ac42681 f788b0f 543f047 f788b0f 543f047 ac42681 bdd4046 ac42681 f788b0f 39891b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
language:
- or
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-or
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0
name: Common Voice 7
args: or
metrics:
- type: wer
value: 47.186
name: Test WER
- name: Test CER
type: cer
value: 11.82
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-or
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6618
- Wer: 0.5166
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 240
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.0493 | 23.53 | 400 | 2.9728 | 1.0 |
| 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 |
| 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 |
| 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 |
| 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 |
| 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 |
| 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 |
| 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 |
| 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 |
| 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-or"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର"
```
### Eval results on Common Voice 7 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 51.92 | 47.186 |
|