anuragshas commited on
Commit
6f2b149
·
1 Parent(s): 04cebec

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-ur-cv8
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-ur-cv8
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.1443
20
+ - Wer: 0.5677
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 1000
48
+ - num_epochs: 200
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:------:|:----:|:---------------:|:------:|
54
+ | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 |
55
+ | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 |
56
+ | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 |
57
+ | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 |
58
+ | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 |
59
+ | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 |
60
+ | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 |
61
+ | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 |
62
+ | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 |
63
+ | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 |
64
+ | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 |
65
+ | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.16.0
71
+ - Pytorch 1.10.0+cu111
72
+ - Datasets 1.18.1
73
+ - Tokenizers 0.11.0