anuragshas
commited on
Commit
·
6f2b149
1
Parent(s):
04cebec
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-ur-cv8
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-ur-cv8
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1443
|
20 |
+
- Wer: 0.5677
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- num_epochs: 200
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|
|
54 |
+
| 3.6269 | 15.98 | 400 | 3.3246 | 1.0 |
|
55 |
+
| 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 |
|
56 |
+
| 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 |
|
57 |
+
| 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 |
|
58 |
+
| 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 |
|
59 |
+
| 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 |
|
60 |
+
| 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 |
|
61 |
+
| 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 |
|
62 |
+
| 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 |
|
63 |
+
| 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 |
|
64 |
+
| 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 |
|
65 |
+
| 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.16.0
|
71 |
+
- Pytorch 1.10.0+cu111
|
72 |
+
- Datasets 1.18.1
|
73 |
+
- Tokenizers 0.11.0
|