--- language: te license: apache-2.0 tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week datasets: - openslr metrics: - wer base_model: facebook/wav2vec2-large-xlsr-53 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Telugu results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: OpenSLR te type: openslr args: te metrics: - type: wer value: 44.98 name: Test WER --- # Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the [OpenSLR SLR66](http://openslr.org/66/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation ```python import torch import torchaudio from datasets import Dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]' resampler = torchaudio.transforms.Resample(48_000, 16_000) def normalizer(text): # Use your custom normalizer text = text.replace("\\n","\n") text = ' '.join(text.split()) text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE) text = re.sub(r'''%'''," శాతం ", text) text = re.sub(r'''(/|-|_)'''," ", text) text = re.sub("ై","ై", text) text = text.strip() return text def speech_file_to_array_fn(batch): batch["sentence"] = normalizer(batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " " speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 44.98% ## Training 70% of the OpenSLR Telugu dataset was used for training. Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv) Test Split of annotations is [here](https://www.dropbox.com/s/qw1uy63oj4qdiu4/test.tsv) Training Data Preparation notebook can be found [here](https://colab.research.google.com/drive/1_VR1QtY9qoiabyXBdJcOI29-xIKGdIzU?usp=sharing) Training notebook can be found[here](https://colab.research.google.com/drive/14N-j4m0Ng_oktPEBN5wiUhDDbyrKYt8I?usp=sharing) Evaluation notebook is [here](https://colab.research.google.com/drive/1SLEvbTWBwecIRTNqpQ0fFTqmr1-7MnSI?usp=sharing)