File size: 4,115 Bytes
466bfc4
97fd903
 
466bfc4
 
97fd903
 
466bfc4
2964fff
466bfc4
2964fff
 
 
466bfc4
2964fff
 
 
 
 
 
 
 
75c0e4f
2964fff
 
 
 
 
 
 
466bfc4
 
 
 
 
 
 
97fd903
466bfc4
97fd903
 
466bfc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
language:
- mt
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: XLS-R-300M - Maltese
  results:
  - task: 
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      type: mozilla-foundation/common_voice_8_0
      name: Common Voice 8
      args: mt
    metrics:
      - type: wer    # Required. Example: wer
        value: 15.967  # Required. Example: 20.90
        name: Test WER    # Optional. Example: Test WER
      - name: Test CER
        type: cer
        value: 3.657
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1895
- Wer: 0.1984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4219        | 3.6   | 400  | 3.3127          | 1.0    |
| 3.0399        | 7.21  | 800  | 3.0330          | 1.0    |
| 1.5756        | 10.81 | 1200 | 0.6108          | 0.5724 |
| 1.0995        | 14.41 | 1600 | 0.3091          | 0.3154 |
| 0.9639        | 18.02 | 2000 | 0.2596          | 0.2841 |
| 0.9032        | 21.62 | 2400 | 0.2270          | 0.2514 |
| 0.8145        | 25.23 | 2800 | 0.2172          | 0.2483 |
| 0.7845        | 28.83 | 3200 | 0.2084          | 0.2333 |
| 0.7694        | 32.43 | 3600 | 0.1974          | 0.2234 |
| 0.7333        | 36.04 | 4000 | 0.2020          | 0.2185 |
| 0.693         | 39.64 | 4400 | 0.1947          | 0.2148 |
| 0.6802        | 43.24 | 4800 | 0.1960          | 0.2102 |
| 0.667         | 46.85 | 5200 | 0.1904          | 0.2072 |
| 0.6486        | 50.45 | 5600 | 0.1881          | 0.2009 |
| 0.6339        | 54.05 | 6000 | 0.1877          | 0.1989 |
| 0.6254        | 57.66 | 6400 | 0.1893          | 0.2003 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test
```


### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "għadu jilagħbu ċirku tant bilfondi"
```

### Eval results on Common Voice 8 "test" (WER):

| Without LM | With LM (run `./eval.py`) |
|---|---|
| 19.853 | 15.967 |