--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-300M - Maltese results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mt metrics: - type: wer # Required. Example: wer value: 15.967 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER - name: Test CER type: cer value: 3.657 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Wer: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4219 | 3.6 | 400 | 3.3127 | 1.0 | | 3.0399 | 7.21 | 800 | 3.0330 | 1.0 | | 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 | | 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 | | 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 | | 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 | | 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 | | 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 | | 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 | | 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 | | 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 | | 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 | | 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 | | 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 | | 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 | | 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "għadu jilagħbu ċirku tant bilfondi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.853 | 15.967 |