File size: 18,878 Bytes
5306da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from concurrent import futures
import asyncio
import torch
from models import build_model
from collections import deque
import grpc
import text_to_speech_pb2
import text_to_speech_pb2_grpc
from chat_database import save_chat_entry
import fastAPI
from providers.audio_provider import get_audio_bytes, dummy_bytes, generate_audio_stream
from providers.llm_provider import getResponseWithRagAsync, getResponseAsync
import whisper
import numpy as np
import os
import re
import time
from silero_vad import load_silero_vad, VADIterator
import random
from providers.filler_words import filler_phrases
from scipy.io.wavfile import write

sampling_rate = 16_000
vad_model = load_silero_vad()
vad_iter = VADIterator(vad_model, sampling_rate=sampling_rate)
frame_size = 512


device = 'cuda' if torch.cuda.is_available() else 'cpu'
whisper_model = whisper.load_model("small", device=device).to(device).eval()
# whisper_model = torch.compile(whisper_model)

MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
    'af',
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]


VOICEPACK = torch.load(
    f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)

AUDIO_FILES_DIR = 'audio_files'
os.makedirs(AUDIO_FILES_DIR, exist_ok=True)

PRE_CHUNK_LIMIT_BYTES = frame_size * 2 * 20

transcription_pool = futures.ThreadPoolExecutor(max_workers=10)

# terminators = ['.', '?', '!']

terminators = ['.', '?', '!', '...', '…', '?!', '!?', '‽', '。', '؟', '۔']

BLACKLIST = {
    "Give me a minute.",
    "Let me check the details.",
    "Give me a minute. Let me check the details."
}


dummy_audio = np.frombuffer(
    np.zeros(int(16_000 * 5.0), dtype=np.float32), dtype=np.int16).astype(np.float32) / 32768.0


async def safe_transcribe(audio_float32):
    loop = asyncio.get_running_loop()
    return await loop.run_in_executor(
        transcription_pool,
        lambda: whisper_model.transcribe(audio_float32,
                                         language="en",
                                         fp16=False,
                                         no_speech_threshold=0.25,
                                         logprob_threshold=-0.6,
                                         prompt="Indian English accent; do not make up words.")
    )


class TextToSpeechServicer(text_to_speech_pb2_grpc.TextToSpeechServiceServicer):

    def __init__(self):
        super().__init__()
        self._transcribe_lock = asyncio.Lock()

    async def ProcessText(self, request_iterator, context):
        try:
            global VOICEPACK

            print("New connection")

            tts_queue = asyncio.Queue()
            response_queue = asyncio.Queue()

            parameters = {
                "processing_active": False,
                "queue": deque(),
                "file_number": 0,
                "session_id": "",
                "interrupt_seq": 0,
                "temperature": 1,
                "activeVoice": "af",
                "in_speech": False,
                "maxTokens": 500,
                "audio_buffer": bytearray(),
                "pre_chunks": bytearray(),
                "silence_counter": 0.0,
                "silence_duration": 0.8,  # default duration in seconds
                "silence_threshold": 800,  # default amplitude threshold
                "VOICEPACK": VOICEPACK,
                "audio_count": 0,
                "user_sequence": 0,
                "last_file_number": 0
            }

            reader = asyncio.create_task(
                self._read_requests(request_iterator, tts_queue, response_queue, parameters))

            tts = asyncio.create_task(self._tts_queue_worker(
                tts_queue, response_queue, parameters))

            try:
                while True:
                    resp = await response_queue.get()
                    if resp is None:
                        break
                    yield resp
            finally:
                reader.cancel()
                tts.cancel()

        except Exception as e:
            print("Error in ProcessText:", e)

    async def _read_requests(self, request_iterator, tts_queue: asyncio.Queue, response_queue: asyncio.Queue, parameters):
        async for request in request_iterator:
            field = request.WhichOneof('request_data')
            if field == 'metadata':
                meta = request.metadata
                # print("\n\nMetadata : ", meta)
                if meta.session_id:
                    parameters["session_id"] = meta.session_id
                if meta.temperature:
                    parameters["temperature"] = meta.temperature
                if meta.maxTokens:
                    parameters["maxTokens"] = meta.maxTokens
                if meta.activeVoice:
                    parameters["activeVoice"] = meta.activeVoice
                    parameters["VOICEPACK"] = torch.load(
                        f'voices/{parameters["activeVoice"]}.pt', weights_only=True).to(device)
                    print("\n\nVoice model loaded successfully")
                if meta.silenceDuration:
                    silence_duration = meta.silenceDuration / 1000
                    parameters["silence_duration"] = silence_duration
                if meta.threshold:
                    parameters["silence_threshold"] = meta.threshold

                print("\n\nPatameter : ", parameters)

                # output = await safe_transcribe("output2.wav")

                resp = text_to_speech_pb2.ProcessTextResponse(
                    buffer=dummy_bytes(),
                    session_id=parameters["session_id"],
                    sequence_id="-10",
                    transcript="",
                )
                await response_queue.put(resp)

                continue
            elif field == 'audio_data':

                buffer = request.audio_data.buffer

                audio_data = np.frombuffer(buffer, dtype=np.int16)

                float_chunk = audio_data.astype(np.float32) / 32768.0

                vad_result = vad_iter(float_chunk)

                parameters["pre_chunks"].extend(buffer)
                if len(parameters["pre_chunks"]) > PRE_CHUNK_LIMIT_BYTES:
                    overflow = len(
                        parameters["pre_chunks"]) - PRE_CHUNK_LIMIT_BYTES
                    del parameters["pre_chunks"][:overflow]

                if vad_result:
                    if "start" in vad_result:
                        parameters["in_speech"] = True
                        parameters["audio_buffer"].extend(
                            parameters["pre_chunks"])
                    if "end" in vad_result:
                        parameters["in_speech"] = False

                if parameters["in_speech"]:
                    parameters["audio_buffer"].extend(buffer)
                    parameters["silence_counter"] = 0.0
                    parameters["audio_count"] += 1
                else:
                    sample_rate = 16000
                    duration = len(audio_data) / sample_rate
                    parameters["silence_counter"] += duration

                if parameters["silence_counter"] >= parameters["silence_duration"]:
                    parameters["silence_counter"] = 0.0
                    if parameters["audio_count"] < 2:
                        parameters["audio_count"] = 0
                        continue
                    parameters["audio_count"] = 0
                    print("Silence ")

                    resp = text_to_speech_pb2.ProcessTextResponse(
                        buffer=dummy_bytes(),
                        session_id=parameters["session_id"],
                        sequence_id="-3",
                        transcript="",
                    )
                    await response_queue.put(resp)

                    # resp = text_to_speech_pb2.ProcessTextResponse(
                    #     buffer=dummy_bytes(),
                    #     session_id=parameters["session_id"],
                    #     sequence_id="0",
                    #     transcript="",
                    # )

                    # await response_queue.put(resp)

                    sample_rate = 16000

                    audio_float = np.frombuffer(
                        parameters["audio_buffer"], dtype=np.int16).astype(np.float32) / 32768.0

                    parameters["audio_buffer"] = bytearray()

                    whisper_start_time = time.time()
                    result = ""
                    try:
                        result = await safe_transcribe(audio_float)
                    except Exception as e:
                        await tts_queue.put(("Sorry! I am not able to catch that can you repeat again please!", parameters["file_number"]))
                        print("Error in transcribing text : ", e)
                        continue

                    whisper_end_time = time.time()
                    time_taken_to_transcribe = whisper_end_time - whisper_start_time
                    print(
                        f"Transcribing time: {time_taken_to_transcribe:.4f} seconds")
                    transcribed_text = result["text"]
                    print(
                        f"Transcribed Text :", transcribed_text)

                    if not transcribed_text.strip():
                        resp = text_to_speech_pb2.ProcessTextResponse(
                            buffer=dummy_bytes(),
                            session_id=parameters["session_id"],
                            sequence_id="-5",
                            transcript="",
                        )
                        await response_queue.put(resp)
                        continue


# Transcript Detected ------------------------------------------------------------------------------------

                    if transcribed_text:
                        parameters["queue"].clear()
                        parameters["user_sequence"] += 1
                        parameters["last_file_number"] = parameters["file_number"]
                        while not response_queue.empty():
                            try:
                                response_queue.get_nowait()
                                response_queue.task_done()
                            except asyncio.QueueEmpty:
                                break
                        while not tts_queue.empty():
                            try:
                                tts_queue.get_nowait()
                                tts_queue.task_done()
                            except asyncio.QueueEmpty:
                                break

                        resp = text_to_speech_pb2.ProcessTextResponse(
                            buffer=dummy_bytes(),
                            session_id=parameters["session_id"],
                            sequence_id="-4",
                            transcript="",
                        )
                        await response_queue.put(resp)
                        resp = text_to_speech_pb2.ProcessTextResponse(
                            buffer=dummy_bytes(),
                            session_id=parameters["session_id"],
                            sequence_id="-2",
                            transcript=transcribed_text,
                        )
                        save_chat_entry(
                            parameters["session_id"], "user", transcribed_text)
                        await response_queue.put(resp)

                        try:
                            filler = random.choice(filler_phrases)
                            # await tts_queue.put((filler, parameters["file_number"]))
                            loop = asyncio.get_event_loop()

                            loop.call_later(
                                0,
                                # 1.0,
                                lambda: asyncio.create_task(
                                    tts_queue.put(
                                        (filler, parameters["file_number"]))
                                )
                            )

                        except Exception as e:
                            print("Error in sendign error : ", e)
                        final_response = ""
                        complete_response = ""
                        current_user_sequence = parameters["user_sequence"]
                        response = await getResponseAsync(
                            transcribed_text, parameters["session_id"])
                        if response is None:
                            continue
                        for chunk in response:
                            if (current_user_sequence != parameters["user_sequence"]):
                                break
                            msg = chunk.choices[0].delta.content
                            if msg:
                                complete_response += msg
                                m = re.search(r'[.?!]', msg)
                                if m:
                                    idx = m.start()
                                    segment = msg[:idx+1]
                                    leftover = msg[idx+1:]
                                else:
                                    segment, leftover = msg, ''

                                final_response += segment

                                if segment.endswith(('.', '!', '?')):
                                    parameters["file_number"] += 1
                                    parameters["queue"].append(
                                        (final_response, parameters["file_number"]))
                                    await tts_queue.put((final_response, parameters["file_number"]))
                                    final_response = leftover

                        if final_response.strip():
                            parameters["file_number"] += 1
                            parameters["queue"].append(
                                (final_response, parameters["file_number"]))
                            await tts_queue.put((final_response, parameters["file_number"]))

                        if ("Let me check" in complete_response):
                            final_response = ""
                            complete_response = ""
                            current_user_sequence = parameters["user_sequence"]
                            response = await getResponseWithRagAsync(
                                transcribed_text, parameters["session_id"])
                            for chunk in response:
                                if (current_user_sequence != parameters["user_sequence"]):
                                    break
                                msg = chunk.choices[0].delta.content
                                if msg:
                                    m = re.search(r'[.?!]', msg)
                                    if m:
                                        idx = m.start()
                                        segment = msg[:idx+1]
                                        leftover = msg[idx+1:]
                                    else:
                                        segment, leftover = msg, ''

                                    final_response += segment
                                    complete_response += segment

                                    if segment.endswith(('.', '!', '?')):
                                        parameters["file_number"] += 1
                                        parameters["queue"].append(
                                            (final_response, parameters["file_number"]))
                                        await tts_queue.put((final_response, parameters["file_number"]))
                                        final_response = leftover

                            if final_response.strip():
                                parameters["file_number"] += 1
                                parameters["queue"].append(
                                    (final_response, parameters["file_number"]))
                                await tts_queue.put((final_response, parameters["file_number"]))

                continue

            elif field == 'status':
                transcript = request.status.transcript
                played_seq = request.status.played_seq
                interrupt_seq = request.status.interrupt_seq
                parameters["interrupt_seq"] = interrupt_seq
                text = transcript.strip() if transcript else ""
                if text and text not in BLACKLIST:
                    save_chat_entry(
                        parameters["session_id"],
                        "assistant",
                        transcript
                    )
                continue
            else:
                continue

    async def _tts_queue_worker(self, tts_queue: asyncio.Queue,
                                response_queue: asyncio.Queue,
                                params: dict):
        """
        Pull (text, seq) off tts_queue, run generate_audio_stream, wrap each chunk
        in ProcessTextResponse, and push into response_queue.
        """
        while True:
            item = await tts_queue.get()
            tts_queue.task_done()
            if item is None:
                break

            sentence, seq = item
            # drop anything the client has already played:
            if seq <= int(params["interrupt_seq"]):
                continue

            # stream the audio chunks, pack into gRPC responses
            async for audio_chunk in generate_audio_stream(
                    sentence, MODEL, params["VOICEPACK"], VOICE_NAME
            ):
                audio_bytes = get_audio_bytes(audio_chunk)
                if seq <= int(params["last_file_number"]):
                    break
                resp = text_to_speech_pb2.ProcessTextResponse(
                    buffer=audio_bytes,
                    session_id=params["session_id"],
                    sequence_id=str(seq),
                    transcript=sentence,
                )
                await response_queue.put(resp)


async def serve():
    print("Starting gRPC server...")

    # Use grpc.aio.server for the gRPC async server
    server = grpc.aio.server(futures.ThreadPoolExecutor(max_workers=10))
    text_to_speech_pb2_grpc.add_TextToSpeechServiceServicer_to_server(
        TextToSpeechServicer(), server)
    server.add_insecure_port('[::]:8081')

    await server.start()
    print("gRPC server is running on port 8081")

    # The serve method should wait for the server to terminate asynchronously
    await server.wait_for_termination()

if __name__ == "__main__":
    # Use asyncio.run to run the asynchronous serve function
    asyncio.run(serve())