File size: 18,878 Bytes
5306da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
from concurrent import futures
import asyncio
import torch
from models import build_model
from collections import deque
import grpc
import text_to_speech_pb2
import text_to_speech_pb2_grpc
from chat_database import save_chat_entry
import fastAPI
from providers.audio_provider import get_audio_bytes, dummy_bytes, generate_audio_stream
from providers.llm_provider import getResponseWithRagAsync, getResponseAsync
import whisper
import numpy as np
import os
import re
import time
from silero_vad import load_silero_vad, VADIterator
import random
from providers.filler_words import filler_phrases
from scipy.io.wavfile import write
sampling_rate = 16_000
vad_model = load_silero_vad()
vad_iter = VADIterator(vad_model, sampling_rate=sampling_rate)
frame_size = 512
device = 'cuda' if torch.cuda.is_available() else 'cpu'
whisper_model = whisper.load_model("small", device=device).to(device).eval()
# whisper_model = torch.compile(whisper_model)
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
'af',
'af_bella', 'af_sarah', 'am_adam', 'am_michael',
'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
'af_nicole', 'af_sky',
][0]
VOICEPACK = torch.load(
f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
AUDIO_FILES_DIR = 'audio_files'
os.makedirs(AUDIO_FILES_DIR, exist_ok=True)
PRE_CHUNK_LIMIT_BYTES = frame_size * 2 * 20
transcription_pool = futures.ThreadPoolExecutor(max_workers=10)
# terminators = ['.', '?', '!']
terminators = ['.', '?', '!', '...', '…', '?!', '!?', '‽', '。', '؟', '۔']
BLACKLIST = {
"Give me a minute.",
"Let me check the details.",
"Give me a minute. Let me check the details."
}
dummy_audio = np.frombuffer(
np.zeros(int(16_000 * 5.0), dtype=np.float32), dtype=np.int16).astype(np.float32) / 32768.0
async def safe_transcribe(audio_float32):
loop = asyncio.get_running_loop()
return await loop.run_in_executor(
transcription_pool,
lambda: whisper_model.transcribe(audio_float32,
language="en",
fp16=False,
no_speech_threshold=0.25,
logprob_threshold=-0.6,
prompt="Indian English accent; do not make up words.")
)
class TextToSpeechServicer(text_to_speech_pb2_grpc.TextToSpeechServiceServicer):
def __init__(self):
super().__init__()
self._transcribe_lock = asyncio.Lock()
async def ProcessText(self, request_iterator, context):
try:
global VOICEPACK
print("New connection")
tts_queue = asyncio.Queue()
response_queue = asyncio.Queue()
parameters = {
"processing_active": False,
"queue": deque(),
"file_number": 0,
"session_id": "",
"interrupt_seq": 0,
"temperature": 1,
"activeVoice": "af",
"in_speech": False,
"maxTokens": 500,
"audio_buffer": bytearray(),
"pre_chunks": bytearray(),
"silence_counter": 0.0,
"silence_duration": 0.8, # default duration in seconds
"silence_threshold": 800, # default amplitude threshold
"VOICEPACK": VOICEPACK,
"audio_count": 0,
"user_sequence": 0,
"last_file_number": 0
}
reader = asyncio.create_task(
self._read_requests(request_iterator, tts_queue, response_queue, parameters))
tts = asyncio.create_task(self._tts_queue_worker(
tts_queue, response_queue, parameters))
try:
while True:
resp = await response_queue.get()
if resp is None:
break
yield resp
finally:
reader.cancel()
tts.cancel()
except Exception as e:
print("Error in ProcessText:", e)
async def _read_requests(self, request_iterator, tts_queue: asyncio.Queue, response_queue: asyncio.Queue, parameters):
async for request in request_iterator:
field = request.WhichOneof('request_data')
if field == 'metadata':
meta = request.metadata
# print("\n\nMetadata : ", meta)
if meta.session_id:
parameters["session_id"] = meta.session_id
if meta.temperature:
parameters["temperature"] = meta.temperature
if meta.maxTokens:
parameters["maxTokens"] = meta.maxTokens
if meta.activeVoice:
parameters["activeVoice"] = meta.activeVoice
parameters["VOICEPACK"] = torch.load(
f'voices/{parameters["activeVoice"]}.pt', weights_only=True).to(device)
print("\n\nVoice model loaded successfully")
if meta.silenceDuration:
silence_duration = meta.silenceDuration / 1000
parameters["silence_duration"] = silence_duration
if meta.threshold:
parameters["silence_threshold"] = meta.threshold
print("\n\nPatameter : ", parameters)
# output = await safe_transcribe("output2.wav")
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=dummy_bytes(),
session_id=parameters["session_id"],
sequence_id="-10",
transcript="",
)
await response_queue.put(resp)
continue
elif field == 'audio_data':
buffer = request.audio_data.buffer
audio_data = np.frombuffer(buffer, dtype=np.int16)
float_chunk = audio_data.astype(np.float32) / 32768.0
vad_result = vad_iter(float_chunk)
parameters["pre_chunks"].extend(buffer)
if len(parameters["pre_chunks"]) > PRE_CHUNK_LIMIT_BYTES:
overflow = len(
parameters["pre_chunks"]) - PRE_CHUNK_LIMIT_BYTES
del parameters["pre_chunks"][:overflow]
if vad_result:
if "start" in vad_result:
parameters["in_speech"] = True
parameters["audio_buffer"].extend(
parameters["pre_chunks"])
if "end" in vad_result:
parameters["in_speech"] = False
if parameters["in_speech"]:
parameters["audio_buffer"].extend(buffer)
parameters["silence_counter"] = 0.0
parameters["audio_count"] += 1
else:
sample_rate = 16000
duration = len(audio_data) / sample_rate
parameters["silence_counter"] += duration
if parameters["silence_counter"] >= parameters["silence_duration"]:
parameters["silence_counter"] = 0.0
if parameters["audio_count"] < 2:
parameters["audio_count"] = 0
continue
parameters["audio_count"] = 0
print("Silence ")
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=dummy_bytes(),
session_id=parameters["session_id"],
sequence_id="-3",
transcript="",
)
await response_queue.put(resp)
# resp = text_to_speech_pb2.ProcessTextResponse(
# buffer=dummy_bytes(),
# session_id=parameters["session_id"],
# sequence_id="0",
# transcript="",
# )
# await response_queue.put(resp)
sample_rate = 16000
audio_float = np.frombuffer(
parameters["audio_buffer"], dtype=np.int16).astype(np.float32) / 32768.0
parameters["audio_buffer"] = bytearray()
whisper_start_time = time.time()
result = ""
try:
result = await safe_transcribe(audio_float)
except Exception as e:
await tts_queue.put(("Sorry! I am not able to catch that can you repeat again please!", parameters["file_number"]))
print("Error in transcribing text : ", e)
continue
whisper_end_time = time.time()
time_taken_to_transcribe = whisper_end_time - whisper_start_time
print(
f"Transcribing time: {time_taken_to_transcribe:.4f} seconds")
transcribed_text = result["text"]
print(
f"Transcribed Text :", transcribed_text)
if not transcribed_text.strip():
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=dummy_bytes(),
session_id=parameters["session_id"],
sequence_id="-5",
transcript="",
)
await response_queue.put(resp)
continue
# Transcript Detected ------------------------------------------------------------------------------------
if transcribed_text:
parameters["queue"].clear()
parameters["user_sequence"] += 1
parameters["last_file_number"] = parameters["file_number"]
while not response_queue.empty():
try:
response_queue.get_nowait()
response_queue.task_done()
except asyncio.QueueEmpty:
break
while not tts_queue.empty():
try:
tts_queue.get_nowait()
tts_queue.task_done()
except asyncio.QueueEmpty:
break
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=dummy_bytes(),
session_id=parameters["session_id"],
sequence_id="-4",
transcript="",
)
await response_queue.put(resp)
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=dummy_bytes(),
session_id=parameters["session_id"],
sequence_id="-2",
transcript=transcribed_text,
)
save_chat_entry(
parameters["session_id"], "user", transcribed_text)
await response_queue.put(resp)
try:
filler = random.choice(filler_phrases)
# await tts_queue.put((filler, parameters["file_number"]))
loop = asyncio.get_event_loop()
loop.call_later(
0,
# 1.0,
lambda: asyncio.create_task(
tts_queue.put(
(filler, parameters["file_number"]))
)
)
except Exception as e:
print("Error in sendign error : ", e)
final_response = ""
complete_response = ""
current_user_sequence = parameters["user_sequence"]
response = await getResponseAsync(
transcribed_text, parameters["session_id"])
if response is None:
continue
for chunk in response:
if (current_user_sequence != parameters["user_sequence"]):
break
msg = chunk.choices[0].delta.content
if msg:
complete_response += msg
m = re.search(r'[.?!]', msg)
if m:
idx = m.start()
segment = msg[:idx+1]
leftover = msg[idx+1:]
else:
segment, leftover = msg, ''
final_response += segment
if segment.endswith(('.', '!', '?')):
parameters["file_number"] += 1
parameters["queue"].append(
(final_response, parameters["file_number"]))
await tts_queue.put((final_response, parameters["file_number"]))
final_response = leftover
if final_response.strip():
parameters["file_number"] += 1
parameters["queue"].append(
(final_response, parameters["file_number"]))
await tts_queue.put((final_response, parameters["file_number"]))
if ("Let me check" in complete_response):
final_response = ""
complete_response = ""
current_user_sequence = parameters["user_sequence"]
response = await getResponseWithRagAsync(
transcribed_text, parameters["session_id"])
for chunk in response:
if (current_user_sequence != parameters["user_sequence"]):
break
msg = chunk.choices[0].delta.content
if msg:
m = re.search(r'[.?!]', msg)
if m:
idx = m.start()
segment = msg[:idx+1]
leftover = msg[idx+1:]
else:
segment, leftover = msg, ''
final_response += segment
complete_response += segment
if segment.endswith(('.', '!', '?')):
parameters["file_number"] += 1
parameters["queue"].append(
(final_response, parameters["file_number"]))
await tts_queue.put((final_response, parameters["file_number"]))
final_response = leftover
if final_response.strip():
parameters["file_number"] += 1
parameters["queue"].append(
(final_response, parameters["file_number"]))
await tts_queue.put((final_response, parameters["file_number"]))
continue
elif field == 'status':
transcript = request.status.transcript
played_seq = request.status.played_seq
interrupt_seq = request.status.interrupt_seq
parameters["interrupt_seq"] = interrupt_seq
text = transcript.strip() if transcript else ""
if text and text not in BLACKLIST:
save_chat_entry(
parameters["session_id"],
"assistant",
transcript
)
continue
else:
continue
async def _tts_queue_worker(self, tts_queue: asyncio.Queue,
response_queue: asyncio.Queue,
params: dict):
"""
Pull (text, seq) off tts_queue, run generate_audio_stream, wrap each chunk
in ProcessTextResponse, and push into response_queue.
"""
while True:
item = await tts_queue.get()
tts_queue.task_done()
if item is None:
break
sentence, seq = item
# drop anything the client has already played:
if seq <= int(params["interrupt_seq"]):
continue
# stream the audio chunks, pack into gRPC responses
async for audio_chunk in generate_audio_stream(
sentence, MODEL, params["VOICEPACK"], VOICE_NAME
):
audio_bytes = get_audio_bytes(audio_chunk)
if seq <= int(params["last_file_number"]):
break
resp = text_to_speech_pb2.ProcessTextResponse(
buffer=audio_bytes,
session_id=params["session_id"],
sequence_id=str(seq),
transcript=sentence,
)
await response_queue.put(resp)
async def serve():
print("Starting gRPC server...")
# Use grpc.aio.server for the gRPC async server
server = grpc.aio.server(futures.ThreadPoolExecutor(max_workers=10))
text_to_speech_pb2_grpc.add_TextToSpeechServiceServicer_to_server(
TextToSpeechServicer(), server)
server.add_insecure_port('[::]:8081')
await server.start()
print("gRPC server is running on port 8081")
# The serve method should wait for the server to terminate asynchronously
await server.wait_for_termination()
if __name__ == "__main__":
# Use asyncio.run to run the asynchronous serve function
asyncio.run(serve())
|