File size: 8,353 Bytes
5306da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from concurrent import futures
import torch
from models import build_model
from collections import deque
import grpc
import text_to_speech_pb2
import text_to_speech_pb2_grpc
from chat_database import save_chat_entry
import fastAPI
from providers.audio_provider import get_audio_bytes, dummy_bytes, generate_audio_from_chunks
from providers.llm_provider import getResponseWithRAG, getResponse


device = 'cuda' if torch.cuda.is_available() else 'cpu'

MODEL = build_model('kokoro-v0_19.pth', device)

VOICE_NAME = [
    'af',
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]


VOICEPACK = torch.load(
    f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)


class TextToSpeechServicer(text_to_speech_pb2_grpc.TextToSpeechServiceServicer):
    def ProcessText(self, request_iterator , context):
        try:
            global VOICEPACK
            print("Received new request")
            parameters = {
                "processing_active": False,
                "queue": deque(),
                "file_number": 0,
                "session_id": "",
                "interrupt_seq": 0,
                "temperature": 1,
                "activeVoice": "af",
                "maxTokens": 500,
            }
            for request in request_iterator:
                field = request.WhichOneof('request_data')
                if field == 'metadata':
                    meta = request.metadata
                    print("Metadata received:")
                    print("  session_id:", meta.session_id)
                    print("  silenceDuration:", meta.silenceDuration)
                    print("  threshold:", meta.threshold)
                    print("  temperature:", meta.temperature)
                    print("  activeVoice:", meta.activeVoice)
                    print("  maxTokens:", meta.maxTokens)
                    print("Metadata : ", request.metadata)
                    if meta.session_id:
                        parameters["session_id"] = meta.session_id
                    if meta.temperature:
                        parameters["temperature"] = meta.temperature
                    if meta.maxTokens:
                        parameters["maxTokens"] = meta.maxTokens
                    if meta.activeVoice:
                        parameters["activeVoice"] = meta.activeVoice
                        VOICEPACK = torch.load(
                            f'voices/{parameters["activeVoice"]}.pt', weights_only=True).to(device)
                    continue
                elif field == 'text':
                    text = request.text
                    if not text:
                        continue
                    # yield text_to_speech_pb2.ProcessTextResponse(
                    #     buffer=dummy_bytes(),
                    #     session_id=parameters["session_id"],
                    #     sequence_id="0",
                    #     transcript="",
                    # )
                    # intent = check_for_rag(
                    #     text, parameters["session_id"])
                    # print("Intent : ", intent.intent)
                    # print("Intent : ", intent.rag)
                    save_chat_entry(parameters["session_id"], "user", text)
                    parameters["queue"].clear()
                    yield text_to_speech_pb2.ProcessTextResponse(
                        buffer=dummy_bytes(),
                        session_id=parameters["session_id"],
                        sequence_id="-2",
                        transcript=text,
                    )
                    final_response = ""
                    complete_response = ""
                    response = getResponse(text, parameters["session_id"])
                    for chunk in response:
                        msg = chunk.choices[0].delta.content
                        if msg:
                            final_response += msg
                            complete_response += msg
                            if final_response.endswith(('.', '!', '?')):
                                parameters["file_number"] += 1
                                parameters["queue"].append(
                                    (final_response, parameters["file_number"]))
                                final_response = ""
                                if not parameters["processing_active"]:
                                    yield from self.process_queue(parameters)

                    if final_response:
                        parameters["file_number"] += 1
                        parameters["queue"].append(
                            (final_response, parameters["file_number"]))
                        if not parameters["processing_active"]:
                            yield from self.process_queue(parameters)

                    if ("Let me check" in complete_response):
                        final_response = ""
                        complete_response = ""
                        response = getResponseWithRAG(
                            text, parameters["session_id"])
                        for chunk in response:
                            msg = chunk.choices[0].delta.content
                            if msg:
                                final_response += msg
                                complete_response += msg
                                if final_response.endswith(('.', '!', '?')):
                                    parameters["file_number"] += 1
                                    parameters["queue"].append(
                                        (final_response, parameters["file_number"]))
                                    final_response = ""
                                    if not parameters["processing_active"]:
                                        yield from self.process_queue(parameters)

                        if final_response:
                            parameters["file_number"] += 1
                            parameters["queue"].append(
                                (final_response, parameters["file_number"]))
                            if not parameters["processing_active"]:
                                yield from self.process_queue(parameters)

                elif field == 'status':
                    transcript = request.status.transcript
                    played_seq = request.status.played_seq
                    interrupt_seq = request.status.interrupt_seq
                    parameters["interrupt_seq"] = interrupt_seq
                    save_chat_entry(
                        parameters["session_id"], "assistant", transcript)
                    continue
                else:
                    continue
        except Exception as e:
            print("Error in ProcessText:", e)

    def process_queue(self, parameters):
        global VOICEPACK
        try:
            while True:
                if not parameters["queue"]:
                    parameters["processing_active"] = False
                    break
                parameters["processing_active"] = True
                sentence, file_number = parameters["queue"].popleft()
                if file_number <= int(parameters["interrupt_seq"]):
                    continue

                combined_audio = generate_audio_from_chunks(
                    sentence, MODEL, VOICEPACK, VOICE_NAME)
                audio_bytes = get_audio_bytes(combined_audio)
                # filename = save_audio_to_file(combined_audio, file_number)
                yield text_to_speech_pb2.ProcessTextResponse(
                    buffer=audio_bytes,
                    session_id=parameters["session_id"],
                    sequence_id=str(file_number),
                    transcript=sentence,
                )
        except Exception as e:
            parameters["processing_active"] = False
            print("Error in process_queue:", e)


def serve():
    print("Starting gRPC server...")
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
    text_to_speech_pb2_grpc.add_TextToSpeechServiceServicer_to_server(
        TextToSpeechServicer(), server)
    server.add_insecure_port('[::]:8081')
    server.start()
    print("gRPC server is running on port 8081")
    server.wait_for_termination()


if __name__ == "__main__":
    serve()