File size: 2,005 Bytes
0f22824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

license: cc-by-sa-4.0
base_model: EMBEDDIA/sloberta
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_cb_sloberta
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_cb_sloberta



This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 1.4656

- Accuracy: 0.6364

- F1: 0.5977



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |

|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|

| 0.7547        | 3.5714  | 50   | 1.5113          | 0.3182   | 0.1536 |

| 0.5654        | 7.1429  | 100  | 0.9706          | 0.6364   | 0.5977 |

| 0.2549        | 10.7143 | 150  | 1.2822          | 0.5909   | 0.5481 |

| 0.1062        | 14.2857 | 200  | 1.4263          | 0.5      | 0.4606 |

| 0.0407        | 17.8571 | 250  | 1.2224          | 0.6364   | 0.5977 |

| 0.0233        | 21.4286 | 300  | 1.4225          | 0.5909   | 0.5545 |

| 0.0189        | 25.0    | 350  | 1.4185          | 0.6364   | 0.5977 |

| 0.0173        | 28.5714 | 400  | 1.4656          | 0.6364   | 0.5977 |





### Framework versions



- Transformers 4.40.1

- Pytorch 2.1.1+cu121

- Datasets 2.19.0

- Tokenizers 0.19.1