File size: 14,433 Bytes
d3e5756 bf88737 1d4f01c 175b813 d3e5756 949149f d7f13e9 46103ec dd6721a 46103ec 04a3fd4 949149f 359c45c bf88737 d1a4f7b 2f12770 949149f 7134c46 2f12770 d1a4f7b 2f12770 949149f fcfe6c5 6920fae 949149f 6920fae 949149f 359c45c bf88737 2c8859a bf88737 dd6721a bf88737 2c8859a bf88737 46103ec fcfe6c5 46103ec bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 b8ba037 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 bf88737 d7f13e9 b8ba037 d7f13e9 bf88737 d7f13e9 bf88737 46103ec bf88737 fcfe6c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
datasets:
- aorogat/QueryBridge
- aorogat/Questions_to_Tagged_Questions_Prompts
license: apache-2.0
base_model:
- meta-llama/Meta-Llama-3-8B
pipeline_tag: token-classification
tags:
- Question Answering
- Knowledge Graphs
- DBPedia
- torchtune
---
# Model Overview
This model is a fine-tuned version of llama3 using the [QueryBridge dataset](https://huggingface.co/datasets/aorogat/QueryBridge). We utilized **Low-Rank Adaptation (LoRA)** to train it for tagging question components using the tags in the table below. The demo video shows how the mapped question appears and, after converting it to a graph representation, how we visualized it as shown in the video.
The tagged questions in the QueryBridge dataset are designed to train language models to understand the components and structure of a question effectively. By annotating questions with specific tags such as `<qt>`, `<p>`, `<o>`, and `<s>`, we provide a detailed breakdown of each question's elements, which aids the model in grasping the roles of different components.
<a href="https://youtu.be/J_N-6m8fHz0">
<img src="https://cdn-uploads.huggingface.co/production/uploads/664adb4a691370727c200af0/sDfp7DiYrGKvH58KdXOIY.png" alt="Training Model with Tagged Questions" width="400" height="300" />
</a>
# Tags Used in Tagged Questions
| Tag | Description |
|-------|-------------|
| `<qt>` | **Question Type**: Tags the keywords or phrases that denote the type of question being asked, such as 'What', 'Who', 'How many', etc. This tag helps determine the type of SPARQL query to generate. Example: In "What is the capital of Canada?", the tag `<qt>What</qt>` indicates that the question is asking for an entity retrieval. |
| `<o>` | **Object Entities**: Tags entities that are objects in the question. These are usually noun phrases referring to the entities being described or queried. Example: In "What is the capital of Canada?", the term 'Canada' is tagged as `<o>Canada</o>`. |
| `<s>` | **Subject Entities**: Tags entities that are subjects in Yes-No questions. This tag is used exclusively for questions that can be answered with 'Yes' or 'No'. Example: In "Is Ottawa the capital of Canada?", the entity 'Ottawa' is tagged as `<s>Ottawa</s>`. |
| `<p>` | **Predicates**: Tags predicates that represent relationships or attributes in the knowledge graph. Predicates can be verb phrases or noun phrases that describe how entities are related. Example: In "What is the capital of Canada?", the phrase 'is the capital of' is tagged as `<p>is the capital of</p>`. |
| `<cc>` | **Coordinating Conjunctions**: Tags conjunctions that connect multiple predicates or entities in complex queries. These include words like 'and', 'or', and 'nor'. They influence how the SPARQL query combines conditions. Example: In "Who is the CEO and founder of Apple Inc?", the conjunction 'and' is tagged as `<cc>and</cc>`. |
| `<off>`| **Offsets**: Tags specific terms that indicate position or order in a sequence, such as 'first', 'second', etc. These are used in questions asking for ordinal positions. Example: In "What is the second largest country?", the word 'second' is tagged as `<off>second</off>`. |
| `<t>` | **Entity Types**: Tags that describe the type or category of the entities involved in the question. This can include types like 'person', 'place', 'organization', etc. Example: In "Which film directed by Garry Marshall?", the type 'film' might be tagged as `<t>film</t>`. |
| `<op>` | **Operators**: Tags operators used in questions that involve comparisons or calculations, such as 'greater than', 'less than', 'more than'. Example: In "Which country has a population greater than 50 million?", the operator 'greater than' is tagged as `<op>greater than</op>`. |
| `<ref>`| **References**: Tags in questions that refer back to previously mentioned entities or concepts. These can indicate cycles or self-references in queries. Example: In "Who is the CEO of the company founded by himself?", the word 'himself' is tagged as `<ref>himself</ref>`. |
# How to use the model?
There are two main steps
## 1- Download the model from Huggingface
To use the model, you can run it with TorchTune commands. I have provided the necessary Python code to automate the process. Follow these steps to get started:
- Download the fintuned version including the `meta_model_0.pt` file and the tokenizer. (see the `files and versions` tap in this page).
- Save the model file in the following directory: `/home/USERNAME/Meta-Llama-3-8B/`
## 2- Using the model
<details>
<summary>Steps</summary>
- **Note:** Replace each `USERNAME` with your username.
### Step 1: Create a Configuration File
First, save a file named `custom_generation_config_bigModel.yaml` in `/home/USERNAME/` with the following content:
```yaml
# Config for running the InferenceRecipe in generate.py to generate output from an LLM
# Model arguments
model:
_component_: torchtune.models.llama3.llama3_8b
checkpointer:
_component_: torchtune.utils.FullModelMetaCheckpointer
checkpoint_dir: /home/USERNAME/Meta-Llama-3-8B/
checkpoint_files: [
meta_model_0.pt
]
output_dir: /home/USERNAME/Meta-Llama-3-8B/
model_type: LLAMA3
device: cuda
dtype: bf16
seed: 1234
# Tokenizer arguments
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /home/USERNAME/Meta-Llama-3-8B/original/tokenizer.model
# Generation arguments; defaults taken from gpt-fast
prompt: "### Instruction: \nYou are a powerful model trained to convert questions to tagged questions. Use the tags as follows: \n<qt> to surround question keywords like 'What', 'Who', 'Which', 'How many', 'Return' or any word that represents requests. \n<o> to surround entities as an object like person name, place name, etc. It must be a noun or a noun phrase. \n<s> to surround entities as a subject like person name, place name, etc. The difference between <s> and <o>, <s> only appear in yes/no questions as in the training data you saw before. \n<cc> to surround coordinating conjunctions that connect two or more phrases like 'and', 'or', 'nor', etc. \n<p> to surround predicates that may be an entity attribute or a relationship between two entities. It can be a verb phrase or a noun phrase. The question must contain at least one predicate. \n<off> for offset in questions asking for the second, third, etc. For example, the question 'What is the second largest country?', <off> will be located as follows. 'What is the <off>second</off> largest country?' \n<t> to surround entity types like person, place, etc. \n<op> to surround operators that compare quantities or values, like 'greater than', 'more than', etc. \n<ref> to indicate a reference within the question that requires a cycle to refer back to an entity (e.g., 'Who is the CEO of a company founded by himself?' where 'himself' would be tagged as <ref>himself</ref>). \nInput: Which films directed by a dirctor died in 2014 and starring both Julia Roberts and Richard Gere?\nResponse:"
max_new_tokens: 100
temperature: 0.6
top_k: 1
quantizer: null
```
### Step 2: Set Up the Environment
Create a virtual environment:
```bash
/home/USERNAME/myenv
```
Install TorchTune with:
```bash
pip install torchtune
```
### Step 3: Create the Python File
Next, create a Python file called `command.py` with the following content:
```python
import subprocess
import os
import re
import shlex # For safely handling command line arguments
def _create_config_file(question):
# Path to the template and output config file
template_path = "/home/USERNAME/custom_generation_config_bigModel.yaml"
output_path = "/tmp/dynamic_generation.yaml"
# Load the template from the file
with open(template_path, 'r') as file:
config_template = file.read()
# Replace the placeholder in the template with the actual question
updated_prompt = config_template.replace("Input: Which films directed by a dirctor died in 2014 and starring both Julia Roberts and Richard Gere?", f"Input: {question}")
maxLen = int(1.3*len(question))
print(f"maxLen: {maxLen}")
updated_prompt = updated_prompt.replace("max_new_tokens: 100", f"max_new_tokens: {maxLen}")
# Write the updated configuration to a new file
with open(output_path, 'w') as file:
file.write(updated_prompt)
print(f"Configuration file created at: {output_path}")
def get_tagged_question(question):
# Define the path to the virtual environment's activation script
activate_env = "/home/USERNAME/myenv/bin/activate"
# Create configuration file with the question
_create_config_file(question)
print('get_tagged_question')
# Command to run within the virtual environment
command = f"tune run generate --config /tmp/dynamic_generation.yaml"
# Full command to activate the environment and run your command
full_command = f"source {activate_env} && {command}"
# Run the full command in a shell
try:
result = subprocess.run(full_command, shell=True, check=True, text=True, capture_output=True, executable="/bin/bash")
print("Command output:", result.stdout)
print("Command error output:", result.stderr)
output = result.stdout + result.stderr
# Extract the input and response using modified regular expressions
input_match = re.search(r'Input: (.*?)(?=Response:)', output, re.S)
response_match = re.search(r'Response: (.*)', output)
response_match = response_match.group(1).strip()
if input_match and response_match:
print("Input Question: ", question)
print("Extracted Response: ", response_match)
else:
print("Input or Response not found in the output.")
except subprocess.CalledProcessError as e:
print("An error occurred:", e.stderr)
return response_match
if __name__ == "__main__":
# Call the function with a sample question
get_tagged_question("Who is the president of largest country in Africa?")
```
### Step 4: Run the Script
To run the script and generate tagged questions, execute the following command in your terminal:
```bash
python command.py
```
</details>
# How We Fine-Tuned the Model
We fine-tuned the `Meta-Llama-3-8B` model by two key steps: preparing the dataset and executing the fine-tuning process.
### 1- Prepare the Dataset
For this fine-tuning, we utilized the [QueryBridge dataset](https://huggingface.co/datasets/aorogat/QueryBridge), specifically the pairs of questions and their corresponding tagged questions. However, before we can use this dataset, it is necessary to convert the data into instruct prompts suitable for fine-tuning the model. You can find these prompts at [this link](https://huggingface.co/datasets/aorogat/Questions_to_Tagged_Questions_Prompts). Download the prompts and save them in the directory: `/home/YOUR_USERNAME/data`
### 2- Fine-Tune the Model
To fine-tune the `Meta-Llama-3-8B` model, we leveraged [Torchtune](https://pytorch.org/torchtune/stable/index.html). Follow these steps to complete the process:
<details>
<summary>Steps</summary>
### Step 1: Download the Model
Begin by downloading the model with the following command. Replace `<ACCESS TOKEN>` with your actual Huggingface token and adjust the output directory as needed:
```bash
tune download \
meta-llama/Meta-Llama-3-8B \
--output-dir /home/YOUR_USERNAME/Meta-Llama-3-8B \
--hf-token <ACCESS TOKEN>
```
### Step 2: Prepare the Configuration File
Next, you need to set up a configuration file. Start by downloading the default configuration:
```bash
tune cp llama3/8B_lora_single_device custom_config.yaml
```
Then, open custom_config.yaml and update it as follows:
```yaml
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Llama3 8B model
#
# Ensure the model is downloaded using the following command before launching:
# tune download meta-llama/Meta-Llama-3-8B --output-dir /tmp/Meta-Llama-3-8B --hf-token <HF_TOKEN>
#
# To launch on a single device, run this command from the root directory:
# tune run lora_finetune_single_device --config llama3/8B_lora_single_device
#
# You can add specific overrides through the command line. For example,
# to override the checkpointer directory, use:
# tune run lora_finetune_single_device --config llama3/8B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config is for training on a single device.
# Model Arguments
model:
_component_: torchtune.models.llama3.lora_llama3_8b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /home/YOUR_USERNAME/Meta-Llama-3-8B/original/tokenizer.model
checkpointer:
_component_: torchtune.utils.FullModelMetaCheckpointer
checkpoint_dir: /home/YOUR_USERNAME/Meta-Llama-3-8B/original/
checkpoint_files: [
consolidated.00.pth
]
recipe_checkpoint: null
output_dir: /home/YOUR_USERNAME/Meta-Llama-3-8B/
model_type: LLAMA3
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.instruct_dataset
split: train
source: /home/YOUR_USERNAME/data
template: AlpacaInstructTemplate
train_on_input: False
seed: null
shuffle: True
batch_size: 1
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torch.nn.CrossEntropyLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 64
compile: False
# Logging
output_dir: /home/YOUR_USERNAME/lora_finetune_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: null
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True
# Profiler (disabled)
profiler:
_component_: torchtune.utils.profiler
enabled: False
```
### Step 3: Run the Finetuning Process
After configuring the file, you can start the finetuning process with the following command:
```bash
tune run lora_finetune_single_device --config /home/YOUR_USERNAME/.../custom_config.yaml
```
The new model can be found in `/home/YOUR_USERNAME/Meta-Llama-3-8B/` directory.
</details> |