File size: 9,428 Bytes
0d48494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2Tokenizer, GPT2Model
from torchaudio.transforms import MelSpectrogram, InverseMelScale, GriffinLim
import torchaudio
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.amp import GradScaler, autocast

class TextToSpeechDataset(Dataset):
    def __init__(self, text_files, audio_files, tokenizer, mel_transform, max_length=512):
        self.text_files = text_files
        self.audio_files = audio_files
        self.tokenizer = tokenizer
        self.mel_transform = mel_transform
        self.max_length = max_length

    def __len__(self):
        return len(self.text_files)

    def __getitem__(self, idx):
        # Load text
        with open(self.text_files[idx], 'r') as f:
            text = f.read().strip()
        
        # Tokenize text
        text_tokens = self.tokenizer.encode(
            text, 
            truncation=True, 
            padding='max_length', 
            max_length=self.max_length, 
            return_tensors="pt"
        ).squeeze(0)
        
        # Load audio and convert to mel spectrogram
        waveform, sample_rate = torchaudio.load(self.audio_files[idx])
        mel_spec = self.mel_transform(waveform)
        
        return text_tokens, mel_spec.squeeze(0)

def collate_fn(batch):
    text_tokens, mel_specs = zip(*batch)
    
    # Pad text tokens
    max_text_len = max(tokens.size(0) for tokens in text_tokens)
    text_tokens_padded = torch.stack([
        torch.cat([tokens, torch.zeros(max_text_len - tokens.size(0), dtype=tokens.dtype)], dim=0)
        if tokens.size(0) < max_text_len
        else tokens[:max_text_len]
        for tokens in text_tokens
    ])
    
    # Pad mel spectrograms
    max_mel_len = max(spec.size(1) for spec in mel_specs)
    mel_specs_padded = torch.stack([
        F.pad(spec, (0, max_mel_len - spec.size(1)))
        if spec.size(1) < max_mel_len
        else spec[:, :max_mel_len]
        for spec in mel_specs
    ])
    
    return text_tokens_padded, mel_specs_padded

class VAEDecoder(nn.Module):
    def __init__(self, latent_dim, mel_channels=80):
        super().__init__()
        # Encoder part (probabilistic)
        self.fc_mu = nn.Linear(latent_dim, latent_dim)
        self.fc_var = nn.Linear(latent_dim, latent_dim)
        
        # Decoder part
        self.decoder_layers = nn.Sequential(
            nn.Linear(latent_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 1024),
            nn.ReLU(),
            nn.Linear(1024, mel_channels * 80),  # Output mel spectrogram
            nn.Unflatten(1, (mel_channels, 80))
        )
    
    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return mu + eps * std
    
    def forward(self, z):
        mu = self.fc_mu(z)
        log_var = self.fc_var(z)
        
        # Reparameterization trick
        z = self.reparameterize(mu, log_var)
        
        # Decode
        mel_spec = self.decoder_layers(z)
        
        return mel_spec, mu, log_var

class TextToSpeechModel(nn.Module):
    def __init__(self, text_encoder, vae_decoder, latent_dim=256):
        super().__init__()
        self.text_encoder = text_encoder
        self.vae_decoder = vae_decoder
        
        # Projection layer to map encoder output to latent space
        self.projection = nn.Linear(text_encoder.config.hidden_size, latent_dim)
    
    def forward(self, text_tokens):
        # Encode text
        encoder_output = self.text_encoder(text_tokens).last_hidden_state
        
        # Mean pooling of encoder output
        text_embedding = encoder_output.mean(dim=1)
        
        # Project to latent space
        latent_z = self.projection(text_embedding)
        
        # Decode to mel spectrogram
        mel_spec, mu, log_var = self.vae_decoder(latent_z)
        
        return mel_spec, mu, log_var

def vae_loss(reconstruction, target, mu, log_var):
    # Reconstruction loss (MSE)
    recon_loss = F.mse_loss(reconstruction, target, reduction='mean')
    
    # KL Divergence loss
    kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
    
    return recon_loss + 0.001 * kl_loss

def train_model(num_epochs=10, accumulation_steps=16):
    # Tokenizer and mel spectrogram transform
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    tokenizer.pad_token = tokenizer.eos_token
    
    # Mel spectrogram configuration
    mel_transform = MelSpectrogram(
        sample_rate=16000, 
        n_mels=80, 
        n_fft=1024, 
        hop_length=256
    )
    
    # Data preparation
    text_folder = './texts'
    audio_folder = './audio'
    
    # Load text and audio files
    text_files = [os.path.join(text_folder, f) for f in os.listdir(text_folder) if f.endswith('.txt')]
    audio_files = [os.path.join(audio_folder, f) for f in os.listdir(audio_folder) if f.endswith('.wav')]
    
    # Split dataset
    train_texts, val_texts, train_audios, val_audios = train_test_split(
        text_files, audio_files, test_size=0.1, random_state=42
    )
    
    # Create datasets and dataloaders
    train_dataset = TextToSpeechDataset(train_texts, train_audios, tokenizer, mel_transform)
    val_dataset = TextToSpeechDataset(val_texts, val_audios, tokenizer, mel_transform)
    
    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)
    val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, collate_fn=collate_fn)
    
    # Model components
    text_encoder = GPT2Model.from_pretrained('gpt2')
    vae_decoder = VAEDecoder(latent_dim=256)
    
    # Combine into full model
    model = TextToSpeechModel(text_encoder, vae_decoder)
    
    # Device setup
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    
    # Optimizer and scheduler
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=1e-6)
    
    # Gradient scaler
    scaler = GradScaler()
    
    best_val_loss = float('inf')
    
    # Training loop
    for epoch in range(num_epochs):
        model.train()
        train_loss = 0
        
        for batch_idx, (text_tokens, mel_specs) in enumerate(tqdm(train_loader, desc=f"Epoch {epoch+1}")):
            text_tokens = text_tokens.to(device)
            mel_specs = mel_specs.to(device)
            
            with autocast(dtype=torch.float16, device_type='cuda'):
                # Forward pass
                reconstructed_mel, mu, log_var = model(text_tokens)
                
                # Compute loss
                loss = vae_loss(reconstructed_mel, mel_specs, mu, log_var)
            
            # Scaled loss and backpropagation
            loss = loss / accumulation_steps
            scaler.scale(loss).backward()
            
            if (batch_idx + 1) % accumulation_steps == 0:
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()
            
            train_loss += loss.item()
        
        # Validation
        model.eval()
        val_loss = 0
        with torch.no_grad():
            for text_tokens, mel_specs in tqdm(val_loader, desc=f"Validation {epoch+1}"):
                text_tokens = text_tokens.to(device)
                mel_specs = mel_specs.to(device)
                
                reconstructed_mel, mu, log_var = model(text_tokens)
                loss = vae_loss(reconstructed_mel, mel_specs, mu, log_var)
                val_loss += loss.item()
        
        # Scheduler step
        scheduler.step()
        
        # Print epoch summary
        print(f'Epoch {epoch+1}: Train Loss: {train_loss/len(train_loader)}, Val Loss: {val_loss/len(val_loader)}')
        
        # Model saving
        if val_loss < best_val_loss:
            best_val_loss = val_loss
            torch.save(model.state_dict(), 'best_tts_model.pth')
    
    return model

# Run training
trained_model = train_model()

# Optional: Inference function for generating mel spectrograms
def generate_mel_spectrogram(text, model, tokenizer, device):
    model.eval()
    with torch.no_grad():
        # Tokenize input text
        text_tokens = tokenizer.encode(
            text, 
            return_tensors="pt", 
            truncation=True, 
            padding='max_length', 
            max_length=512
        ).to(device)
        
        # Generate mel spectrogram
        mel_spec, _, _ = model(text_tokens)
        
        return mel_spec

# Optional: Convert mel spectrogram back to audio
def mel_to_audio(mel_spec, sample_rate=16000):
    # Use griffin-lim for mel spectrogram inversion
    inverse_mel = InverseMelScale(sample_rate=sample_rate)
    griffin_lim = GriffinLim(sample_rate=sample_rate)
    
    # Convert mel spectrogram back to waveform
    waveform = griffin_lim(inverse_mel(mel_spec))
    
    return waveform