apcl
/

chiayisu commited on
Commit
2f30e1d
·
1 Parent(s): bd9b9dd
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. codellama/c/callgraph_c_pretrained/all_results.json +8 -0
  2. codellama/c/callgraph_c_pretrained/checkpoint-470/README.md +202 -0
  3. codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_config.json +34 -0
  4. codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model.safetensors +3 -0
  5. codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/README.md +202 -0
  6. codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/adapter_config.json +34 -0
  7. codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/adapter_model.safetensors +3 -0
  8. codellama/c/callgraph_c_pretrained/checkpoint-470/added_tokens.json +3 -0
  9. codellama/c/callgraph_c_pretrained/checkpoint-470/optimizer.pt +3 -0
  10. codellama/c/callgraph_c_pretrained/checkpoint-470/rng_state.pth +3 -0
  11. codellama/c/callgraph_c_pretrained/checkpoint-470/scheduler.pt +3 -0
  12. codellama/c/callgraph_c_pretrained/checkpoint-470/special_tokens_map.json +36 -0
  13. codellama/c/callgraph_c_pretrained/checkpoint-470/tokenizer.model +3 -0
  14. codellama/c/callgraph_c_pretrained/checkpoint-470/tokenizer_config.json +94 -0
  15. codellama/c/callgraph_c_pretrained/checkpoint-470/trainer_state.json +691 -0
  16. codellama/c/callgraph_c_pretrained/checkpoint-470/training_args.bin +3 -0
  17. codellama/c/callgraph_c_pretrained/completed +0 -0
  18. codellama/c/callgraph_c_pretrained/metrics.json +1 -0
  19. codellama/c/callgraph_c_pretrained/train_results.json +8 -0
  20. codellama/c/callgraph_c_pretrained/trainer_state.json +700 -0
  21. codellama/c/codegen/codegen_c_base/all_results.json +8 -0
  22. codellama/c/codegen/codegen_c_base/checkpoint-250/README.md +202 -0
  23. codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_config.json +34 -0
  24. codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model.safetensors +3 -0
  25. codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/README.md +202 -0
  26. codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/adapter_config.json +34 -0
  27. codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/adapter_model.safetensors +3 -0
  28. codellama/c/codegen/codegen_c_base/checkpoint-250/added_tokens.json +3 -0
  29. codellama/c/codegen/codegen_c_base/checkpoint-250/optimizer.pt +3 -0
  30. codellama/c/codegen/codegen_c_base/checkpoint-250/rng_state.pth +3 -0
  31. codellama/c/codegen/codegen_c_base/checkpoint-250/scheduler.pt +3 -0
  32. codellama/c/codegen/codegen_c_base/checkpoint-250/special_tokens_map.json +36 -0
  33. codellama/c/codegen/codegen_c_base/checkpoint-250/tokenizer.model +3 -0
  34. codellama/c/codegen/codegen_c_base/checkpoint-250/tokenizer_config.json +94 -0
  35. codellama/c/codegen/codegen_c_base/checkpoint-250/trainer_state.json +383 -0
  36. codellama/c/codegen/codegen_c_base/checkpoint-250/training_args.bin +3 -0
  37. codellama/c/codegen/codegen_c_base/completed +0 -0
  38. codellama/c/codegen/codegen_c_base/metrics.json +1 -0
  39. codellama/c/codegen/codegen_c_base/train_results.json +8 -0
  40. codellama/c/codegen/codegen_c_base/trainer_state.json +392 -0
  41. codellama/c/codegen/codegen_c_callgraph/all_results.json +8 -0
  42. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/README.md +202 -0
  43. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_config.json +34 -0
  44. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model.safetensors +3 -0
  45. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/README.md +202 -0
  46. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/adapter_config.json +34 -0
  47. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/adapter_model.safetensors +3 -0
  48. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/added_tokens.json +3 -0
  49. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/optimizer.pt +3 -0
  50. codellama/c/codegen/codegen_c_callgraph/checkpoint-250/rng_state.pth +3 -0
codellama/c/callgraph_c_pretrained/all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.504,
3
+ "total_flos": 2.7094162776644813e+18,
4
+ "train_loss": 0.8028768169119003,
5
+ "train_runtime": 84777.289,
6
+ "train_samples_per_second": 0.355,
7
+ "train_steps_per_second": 0.006
8
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "gate_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:496f57c9e48744c36c05eb597046e53c7f65a711bd7d869d9be95a50ddb742b3
3
+ size 1156480200
codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "gate_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/adapter_model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:496f57c9e48744c36c05eb597046e53c7f65a711bd7d869d9be95a50ddb742b3
3
+ size 1156480200
codellama/c/callgraph_c_pretrained/checkpoint-470/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32016
3
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c78b0ad96a7328411a9c874d042463b20a615201bd9f8f7f78d73ff2ffb60d6e
3
+ size 2003127538
codellama/c/callgraph_c_pretrained/checkpoint-470/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4a52a684b9d61e86ff83d2ea2b3e12008f3394639dfd22a8d71f8e64032f458
3
+ size 14244
codellama/c/callgraph_c_pretrained/checkpoint-470/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e20bf7ee79a65811d62a4cee70ed79c6e890eb65e39067c9ecbb1074504af0b
3
+ size 1064
codellama/c/callgraph_c_pretrained/checkpoint-470/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "[PAD]",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
codellama/c/callgraph_c_pretrained/checkpoint-470/tokenizer_config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32016": {
62
+ "content": "[PAD]",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ }
69
+ },
70
+ "additional_special_tokens": [
71
+ "▁<PRE>",
72
+ "▁<MID>",
73
+ "▁<SUF>",
74
+ "▁<EOT>"
75
+ ],
76
+ "bos_token": "<s>",
77
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
78
+ "clean_up_tokenization_spaces": false,
79
+ "eos_token": "</s>",
80
+ "eot_token": "▁<EOT>",
81
+ "fill_token": "<FILL_ME>",
82
+ "legacy": null,
83
+ "middle_token": "▁<MID>",
84
+ "model_max_length": 1000000000000000019884624838656,
85
+ "pad_token": "[PAD]",
86
+ "padding_side": "right",
87
+ "prefix_token": "▁<PRE>",
88
+ "sp_model_kwargs": {},
89
+ "suffix_first": false,
90
+ "suffix_token": "▁<SUF>",
91
+ "tokenizer_class": "CodeLlamaTokenizer",
92
+ "unk_token": "<unk>",
93
+ "use_default_system_prompt": false
94
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/trainer_state.json ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.504,
5
+ "eval_steps": 500,
6
+ "global_step": 470,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 0.33984375,
14
+ "learning_rate": 0.0001,
15
+ "loss": 4.2845,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "grad_norm": 0.20703125,
21
+ "learning_rate": 0.0001,
22
+ "loss": 2.611,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.048,
27
+ "grad_norm": 2.8125,
28
+ "learning_rate": 0.0001,
29
+ "loss": 2.1007,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.064,
34
+ "grad_norm": 1.2890625,
35
+ "learning_rate": 0.0001,
36
+ "loss": 2.0667,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.08,
41
+ "grad_norm": 0.3203125,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.6745,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.096,
48
+ "grad_norm": 0.33984375,
49
+ "learning_rate": 0.0001,
50
+ "loss": 1.4179,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.112,
55
+ "grad_norm": 0.369140625,
56
+ "learning_rate": 0.0001,
57
+ "loss": 1.256,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.128,
62
+ "grad_norm": 0.1767578125,
63
+ "learning_rate": 0.0001,
64
+ "loss": 1.1206,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.144,
69
+ "grad_norm": 0.1806640625,
70
+ "learning_rate": 0.0001,
71
+ "loss": 0.8113,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.16,
76
+ "grad_norm": 0.31640625,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.5563,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.176,
83
+ "grad_norm": 0.47265625,
84
+ "learning_rate": 0.0001,
85
+ "loss": 1.2945,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.192,
90
+ "grad_norm": 0.30078125,
91
+ "learning_rate": 0.0001,
92
+ "loss": 1.1513,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.208,
97
+ "grad_norm": 0.87109375,
98
+ "learning_rate": 0.0001,
99
+ "loss": 1.0038,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.224,
104
+ "grad_norm": 0.11376953125,
105
+ "learning_rate": 0.0001,
106
+ "loss": 0.9775,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.24,
111
+ "grad_norm": 0.1376953125,
112
+ "learning_rate": 0.0001,
113
+ "loss": 0.9107,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.256,
118
+ "grad_norm": 0.13671875,
119
+ "learning_rate": 0.0001,
120
+ "loss": 0.8357,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.272,
125
+ "grad_norm": 0.2734375,
126
+ "learning_rate": 0.0001,
127
+ "loss": 0.8438,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.288,
132
+ "grad_norm": 0.1318359375,
133
+ "learning_rate": 0.0001,
134
+ "loss": 0.8182,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.304,
139
+ "grad_norm": 0.1220703125,
140
+ "learning_rate": 0.0001,
141
+ "loss": 0.6811,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.32,
146
+ "grad_norm": 0.1474609375,
147
+ "learning_rate": 0.0001,
148
+ "loss": 0.5087,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.336,
153
+ "grad_norm": 0.1767578125,
154
+ "learning_rate": 0.0001,
155
+ "loss": 0.9827,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.352,
160
+ "grad_norm": 0.1943359375,
161
+ "learning_rate": 0.0001,
162
+ "loss": 0.9673,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.368,
167
+ "grad_norm": 0.21484375,
168
+ "learning_rate": 0.0001,
169
+ "loss": 0.9514,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.384,
174
+ "grad_norm": 0.1630859375,
175
+ "learning_rate": 0.0001,
176
+ "loss": 0.8378,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.4,
181
+ "grad_norm": 0.1220703125,
182
+ "learning_rate": 0.0001,
183
+ "loss": 0.8721,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.416,
188
+ "grad_norm": 0.1328125,
189
+ "learning_rate": 0.0001,
190
+ "loss": 0.8317,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.432,
195
+ "grad_norm": 0.1328125,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.7948,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.448,
202
+ "grad_norm": 0.1328125,
203
+ "learning_rate": 0.0001,
204
+ "loss": 0.7682,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.464,
209
+ "grad_norm": 0.107421875,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.6472,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.48,
216
+ "grad_norm": 0.1513671875,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.463,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.496,
223
+ "grad_norm": 0.16015625,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.8907,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.512,
230
+ "grad_norm": 0.1337890625,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.8254,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.528,
237
+ "grad_norm": 0.146484375,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.8455,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.544,
244
+ "grad_norm": 0.15625,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.8194,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.56,
251
+ "grad_norm": 0.166015625,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.8291,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.576,
258
+ "grad_norm": 0.1787109375,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.7265,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.592,
265
+ "grad_norm": 0.208984375,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.7856,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.608,
272
+ "grad_norm": 0.2216796875,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.7599,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.624,
279
+ "grad_norm": 0.130859375,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.6127,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.64,
286
+ "grad_norm": 0.1982421875,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.4152,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.656,
293
+ "grad_norm": 0.1943359375,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.8772,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.672,
300
+ "grad_norm": 0.197265625,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.7661,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.688,
307
+ "grad_norm": 0.173828125,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.8362,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.704,
314
+ "grad_norm": 0.18359375,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.6781,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.72,
321
+ "grad_norm": 0.1708984375,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.7479,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.736,
328
+ "grad_norm": 0.177734375,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.6598,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.752,
335
+ "grad_norm": 0.177734375,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.7109,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.768,
342
+ "grad_norm": 0.1337890625,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.6603,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.784,
349
+ "grad_norm": 0.1494140625,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.5983,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.8,
356
+ "grad_norm": 0.1630859375,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.3945,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.816,
363
+ "grad_norm": 0.173828125,
364
+ "learning_rate": 0.0001,
365
+ "loss": 0.7734,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.832,
370
+ "grad_norm": 0.2021484375,
371
+ "learning_rate": 0.0001,
372
+ "loss": 0.7553,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.848,
377
+ "grad_norm": 0.177734375,
378
+ "learning_rate": 0.0001,
379
+ "loss": 0.8062,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.864,
384
+ "grad_norm": 0.150390625,
385
+ "learning_rate": 0.0001,
386
+ "loss": 0.6815,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.88,
391
+ "grad_norm": 0.1689453125,
392
+ "learning_rate": 0.0001,
393
+ "loss": 0.7524,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.896,
398
+ "grad_norm": 0.1572265625,
399
+ "learning_rate": 0.0001,
400
+ "loss": 0.6798,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.912,
405
+ "grad_norm": 0.177734375,
406
+ "learning_rate": 0.0001,
407
+ "loss": 0.7037,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.928,
412
+ "grad_norm": 0.1591796875,
413
+ "learning_rate": 0.0001,
414
+ "loss": 0.6274,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.944,
419
+ "grad_norm": 0.1630859375,
420
+ "learning_rate": 0.0001,
421
+ "loss": 0.6103,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.96,
426
+ "grad_norm": 0.22265625,
427
+ "learning_rate": 0.0001,
428
+ "loss": 0.3983,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.976,
433
+ "grad_norm": 0.1611328125,
434
+ "learning_rate": 0.0001,
435
+ "loss": 0.6683,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.992,
440
+ "grad_norm": 0.1533203125,
441
+ "learning_rate": 0.0001,
442
+ "loss": 0.6045,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 1.008,
447
+ "grad_norm": 0.1630859375,
448
+ "learning_rate": 0.0001,
449
+ "loss": 0.5759,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 1.024,
454
+ "grad_norm": 0.1904296875,
455
+ "learning_rate": 0.0001,
456
+ "loss": 0.5826,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 1.04,
461
+ "grad_norm": 0.2490234375,
462
+ "learning_rate": 0.0001,
463
+ "loss": 0.6502,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 1.056,
468
+ "grad_norm": 0.2353515625,
469
+ "learning_rate": 0.0001,
470
+ "loss": 0.6278,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 1.072,
475
+ "grad_norm": 0.1904296875,
476
+ "learning_rate": 0.0001,
477
+ "loss": 0.6155,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 1.088,
482
+ "grad_norm": 0.2265625,
483
+ "learning_rate": 0.0001,
484
+ "loss": 0.6104,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 1.104,
489
+ "grad_norm": 0.21875,
490
+ "learning_rate": 0.0001,
491
+ "loss": 0.5942,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 1.12,
496
+ "grad_norm": 0.224609375,
497
+ "learning_rate": 0.0001,
498
+ "loss": 0.6177,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 1.1360000000000001,
503
+ "grad_norm": 0.1796875,
504
+ "learning_rate": 0.0001,
505
+ "loss": 0.5307,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 1.152,
510
+ "grad_norm": 0.1630859375,
511
+ "learning_rate": 0.0001,
512
+ "loss": 0.443,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 1.168,
517
+ "grad_norm": 0.2431640625,
518
+ "learning_rate": 0.0001,
519
+ "loss": 0.4582,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 1.184,
524
+ "grad_norm": 0.2138671875,
525
+ "learning_rate": 0.0001,
526
+ "loss": 0.6175,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 1.2,
531
+ "grad_norm": 0.22265625,
532
+ "learning_rate": 0.0001,
533
+ "loss": 0.6191,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 1.216,
538
+ "grad_norm": 0.25,
539
+ "learning_rate": 0.0001,
540
+ "loss": 0.5887,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 1.232,
545
+ "grad_norm": 0.1962890625,
546
+ "learning_rate": 0.0001,
547
+ "loss": 0.5517,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 1.248,
552
+ "grad_norm": 0.2109375,
553
+ "learning_rate": 0.0001,
554
+ "loss": 0.5712,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 1.264,
559
+ "grad_norm": 0.1904296875,
560
+ "learning_rate": 0.0001,
561
+ "loss": 0.5526,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 1.28,
566
+ "grad_norm": 0.2119140625,
567
+ "learning_rate": 0.0001,
568
+ "loss": 0.6027,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 1.296,
573
+ "grad_norm": 0.1865234375,
574
+ "learning_rate": 0.0001,
575
+ "loss": 0.5325,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 1.312,
580
+ "grad_norm": 0.212890625,
581
+ "learning_rate": 0.0001,
582
+ "loss": 0.4752,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 1.328,
587
+ "grad_norm": 0.25,
588
+ "learning_rate": 0.0001,
589
+ "loss": 0.4214,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 1.3439999999999999,
594
+ "grad_norm": 0.306640625,
595
+ "learning_rate": 0.0001,
596
+ "loss": 0.6299,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 1.3599999999999999,
601
+ "grad_norm": 0.361328125,
602
+ "learning_rate": 0.0001,
603
+ "loss": 0.6215,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 1.376,
608
+ "grad_norm": 0.310546875,
609
+ "learning_rate": 0.0001,
610
+ "loss": 0.5869,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 1.392,
615
+ "grad_norm": 0.2255859375,
616
+ "learning_rate": 0.0001,
617
+ "loss": 0.5448,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 1.408,
622
+ "grad_norm": 0.306640625,
623
+ "learning_rate": 0.0001,
624
+ "loss": 0.6038,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 1.424,
629
+ "grad_norm": 0.37890625,
630
+ "learning_rate": 0.0001,
631
+ "loss": 0.5647,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 1.44,
636
+ "grad_norm": 0.26953125,
637
+ "learning_rate": 0.0001,
638
+ "loss": 0.5564,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 1.456,
643
+ "grad_norm": 0.1796875,
644
+ "learning_rate": 0.0001,
645
+ "loss": 0.4994,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 1.472,
650
+ "grad_norm": 0.25,
651
+ "learning_rate": 0.0001,
652
+ "loss": 0.4244,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 1.488,
657
+ "grad_norm": 0.2451171875,
658
+ "learning_rate": 0.0001,
659
+ "loss": 0.4652,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 1.504,
664
+ "grad_norm": 0.2578125,
665
+ "learning_rate": 0.0001,
666
+ "loss": 0.5929,
667
+ "step": 470
668
+ }
669
+ ],
670
+ "logging_steps": 5,
671
+ "max_steps": 470,
672
+ "num_input_tokens_seen": 0,
673
+ "num_train_epochs": 2,
674
+ "save_steps": 90,
675
+ "stateful_callbacks": {
676
+ "TrainerControl": {
677
+ "args": {
678
+ "should_epoch_stop": false,
679
+ "should_evaluate": false,
680
+ "should_log": false,
681
+ "should_save": true,
682
+ "should_training_stop": true
683
+ },
684
+ "attributes": {}
685
+ }
686
+ },
687
+ "total_flos": 2.7094162776644813e+18,
688
+ "train_batch_size": 4,
689
+ "trial_name": null,
690
+ "trial_params": null
691
+ }
codellama/c/callgraph_c_pretrained/checkpoint-470/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bebd10fa73e376c5dc7a1d5f4eeaf2de33a78c079315ba09dfc98196209d0ea7
3
+ size 7416
codellama/c/callgraph_c_pretrained/completed ADDED
File without changes
codellama/c/callgraph_c_pretrained/metrics.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"run_name": "callgraph_c_pretrained", "train_runtime": 84777.289, "train_samples_per_second": 0.355, "train_steps_per_second": 0.006, "total_flos": 2.7094162776644813e+18, "train_loss": 0.8028768169119003, "epoch": 1.504}
codellama/c/callgraph_c_pretrained/train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.504,
3
+ "total_flos": 2.7094162776644813e+18,
4
+ "train_loss": 0.8028768169119003,
5
+ "train_runtime": 84777.289,
6
+ "train_samples_per_second": 0.355,
7
+ "train_steps_per_second": 0.006
8
+ }
codellama/c/callgraph_c_pretrained/trainer_state.json ADDED
@@ -0,0 +1,700 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.504,
5
+ "eval_steps": 500,
6
+ "global_step": 470,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 0.33984375,
14
+ "learning_rate": 0.0001,
15
+ "loss": 4.2845,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "grad_norm": 0.20703125,
21
+ "learning_rate": 0.0001,
22
+ "loss": 2.611,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.048,
27
+ "grad_norm": 2.8125,
28
+ "learning_rate": 0.0001,
29
+ "loss": 2.1007,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.064,
34
+ "grad_norm": 1.2890625,
35
+ "learning_rate": 0.0001,
36
+ "loss": 2.0667,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.08,
41
+ "grad_norm": 0.3203125,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.6745,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.096,
48
+ "grad_norm": 0.33984375,
49
+ "learning_rate": 0.0001,
50
+ "loss": 1.4179,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.112,
55
+ "grad_norm": 0.369140625,
56
+ "learning_rate": 0.0001,
57
+ "loss": 1.256,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.128,
62
+ "grad_norm": 0.1767578125,
63
+ "learning_rate": 0.0001,
64
+ "loss": 1.1206,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.144,
69
+ "grad_norm": 0.1806640625,
70
+ "learning_rate": 0.0001,
71
+ "loss": 0.8113,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.16,
76
+ "grad_norm": 0.31640625,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.5563,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.176,
83
+ "grad_norm": 0.47265625,
84
+ "learning_rate": 0.0001,
85
+ "loss": 1.2945,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.192,
90
+ "grad_norm": 0.30078125,
91
+ "learning_rate": 0.0001,
92
+ "loss": 1.1513,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.208,
97
+ "grad_norm": 0.87109375,
98
+ "learning_rate": 0.0001,
99
+ "loss": 1.0038,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.224,
104
+ "grad_norm": 0.11376953125,
105
+ "learning_rate": 0.0001,
106
+ "loss": 0.9775,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.24,
111
+ "grad_norm": 0.1376953125,
112
+ "learning_rate": 0.0001,
113
+ "loss": 0.9107,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.256,
118
+ "grad_norm": 0.13671875,
119
+ "learning_rate": 0.0001,
120
+ "loss": 0.8357,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.272,
125
+ "grad_norm": 0.2734375,
126
+ "learning_rate": 0.0001,
127
+ "loss": 0.8438,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.288,
132
+ "grad_norm": 0.1318359375,
133
+ "learning_rate": 0.0001,
134
+ "loss": 0.8182,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.304,
139
+ "grad_norm": 0.1220703125,
140
+ "learning_rate": 0.0001,
141
+ "loss": 0.6811,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.32,
146
+ "grad_norm": 0.1474609375,
147
+ "learning_rate": 0.0001,
148
+ "loss": 0.5087,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.336,
153
+ "grad_norm": 0.1767578125,
154
+ "learning_rate": 0.0001,
155
+ "loss": 0.9827,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.352,
160
+ "grad_norm": 0.1943359375,
161
+ "learning_rate": 0.0001,
162
+ "loss": 0.9673,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.368,
167
+ "grad_norm": 0.21484375,
168
+ "learning_rate": 0.0001,
169
+ "loss": 0.9514,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.384,
174
+ "grad_norm": 0.1630859375,
175
+ "learning_rate": 0.0001,
176
+ "loss": 0.8378,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.4,
181
+ "grad_norm": 0.1220703125,
182
+ "learning_rate": 0.0001,
183
+ "loss": 0.8721,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.416,
188
+ "grad_norm": 0.1328125,
189
+ "learning_rate": 0.0001,
190
+ "loss": 0.8317,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.432,
195
+ "grad_norm": 0.1328125,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.7948,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.448,
202
+ "grad_norm": 0.1328125,
203
+ "learning_rate": 0.0001,
204
+ "loss": 0.7682,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.464,
209
+ "grad_norm": 0.107421875,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.6472,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.48,
216
+ "grad_norm": 0.1513671875,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.463,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.496,
223
+ "grad_norm": 0.16015625,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.8907,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.512,
230
+ "grad_norm": 0.1337890625,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.8254,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.528,
237
+ "grad_norm": 0.146484375,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.8455,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.544,
244
+ "grad_norm": 0.15625,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.8194,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.56,
251
+ "grad_norm": 0.166015625,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.8291,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.576,
258
+ "grad_norm": 0.1787109375,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.7265,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.592,
265
+ "grad_norm": 0.208984375,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.7856,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.608,
272
+ "grad_norm": 0.2216796875,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.7599,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.624,
279
+ "grad_norm": 0.130859375,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.6127,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.64,
286
+ "grad_norm": 0.1982421875,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.4152,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.656,
293
+ "grad_norm": 0.1943359375,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.8772,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.672,
300
+ "grad_norm": 0.197265625,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.7661,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.688,
307
+ "grad_norm": 0.173828125,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.8362,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.704,
314
+ "grad_norm": 0.18359375,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.6781,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.72,
321
+ "grad_norm": 0.1708984375,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.7479,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.736,
328
+ "grad_norm": 0.177734375,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.6598,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.752,
335
+ "grad_norm": 0.177734375,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.7109,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.768,
342
+ "grad_norm": 0.1337890625,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.6603,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.784,
349
+ "grad_norm": 0.1494140625,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.5983,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.8,
356
+ "grad_norm": 0.1630859375,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.3945,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.816,
363
+ "grad_norm": 0.173828125,
364
+ "learning_rate": 0.0001,
365
+ "loss": 0.7734,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.832,
370
+ "grad_norm": 0.2021484375,
371
+ "learning_rate": 0.0001,
372
+ "loss": 0.7553,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.848,
377
+ "grad_norm": 0.177734375,
378
+ "learning_rate": 0.0001,
379
+ "loss": 0.8062,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.864,
384
+ "grad_norm": 0.150390625,
385
+ "learning_rate": 0.0001,
386
+ "loss": 0.6815,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.88,
391
+ "grad_norm": 0.1689453125,
392
+ "learning_rate": 0.0001,
393
+ "loss": 0.7524,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.896,
398
+ "grad_norm": 0.1572265625,
399
+ "learning_rate": 0.0001,
400
+ "loss": 0.6798,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.912,
405
+ "grad_norm": 0.177734375,
406
+ "learning_rate": 0.0001,
407
+ "loss": 0.7037,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.928,
412
+ "grad_norm": 0.1591796875,
413
+ "learning_rate": 0.0001,
414
+ "loss": 0.6274,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.944,
419
+ "grad_norm": 0.1630859375,
420
+ "learning_rate": 0.0001,
421
+ "loss": 0.6103,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.96,
426
+ "grad_norm": 0.22265625,
427
+ "learning_rate": 0.0001,
428
+ "loss": 0.3983,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.976,
433
+ "grad_norm": 0.1611328125,
434
+ "learning_rate": 0.0001,
435
+ "loss": 0.6683,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.992,
440
+ "grad_norm": 0.1533203125,
441
+ "learning_rate": 0.0001,
442
+ "loss": 0.6045,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 1.008,
447
+ "grad_norm": 0.1630859375,
448
+ "learning_rate": 0.0001,
449
+ "loss": 0.5759,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 1.024,
454
+ "grad_norm": 0.1904296875,
455
+ "learning_rate": 0.0001,
456
+ "loss": 0.5826,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 1.04,
461
+ "grad_norm": 0.2490234375,
462
+ "learning_rate": 0.0001,
463
+ "loss": 0.6502,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 1.056,
468
+ "grad_norm": 0.2353515625,
469
+ "learning_rate": 0.0001,
470
+ "loss": 0.6278,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 1.072,
475
+ "grad_norm": 0.1904296875,
476
+ "learning_rate": 0.0001,
477
+ "loss": 0.6155,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 1.088,
482
+ "grad_norm": 0.2265625,
483
+ "learning_rate": 0.0001,
484
+ "loss": 0.6104,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 1.104,
489
+ "grad_norm": 0.21875,
490
+ "learning_rate": 0.0001,
491
+ "loss": 0.5942,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 1.12,
496
+ "grad_norm": 0.224609375,
497
+ "learning_rate": 0.0001,
498
+ "loss": 0.6177,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 1.1360000000000001,
503
+ "grad_norm": 0.1796875,
504
+ "learning_rate": 0.0001,
505
+ "loss": 0.5307,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 1.152,
510
+ "grad_norm": 0.1630859375,
511
+ "learning_rate": 0.0001,
512
+ "loss": 0.443,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 1.168,
517
+ "grad_norm": 0.2431640625,
518
+ "learning_rate": 0.0001,
519
+ "loss": 0.4582,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 1.184,
524
+ "grad_norm": 0.2138671875,
525
+ "learning_rate": 0.0001,
526
+ "loss": 0.6175,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 1.2,
531
+ "grad_norm": 0.22265625,
532
+ "learning_rate": 0.0001,
533
+ "loss": 0.6191,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 1.216,
538
+ "grad_norm": 0.25,
539
+ "learning_rate": 0.0001,
540
+ "loss": 0.5887,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 1.232,
545
+ "grad_norm": 0.1962890625,
546
+ "learning_rate": 0.0001,
547
+ "loss": 0.5517,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 1.248,
552
+ "grad_norm": 0.2109375,
553
+ "learning_rate": 0.0001,
554
+ "loss": 0.5712,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 1.264,
559
+ "grad_norm": 0.1904296875,
560
+ "learning_rate": 0.0001,
561
+ "loss": 0.5526,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 1.28,
566
+ "grad_norm": 0.2119140625,
567
+ "learning_rate": 0.0001,
568
+ "loss": 0.6027,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 1.296,
573
+ "grad_norm": 0.1865234375,
574
+ "learning_rate": 0.0001,
575
+ "loss": 0.5325,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 1.312,
580
+ "grad_norm": 0.212890625,
581
+ "learning_rate": 0.0001,
582
+ "loss": 0.4752,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 1.328,
587
+ "grad_norm": 0.25,
588
+ "learning_rate": 0.0001,
589
+ "loss": 0.4214,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 1.3439999999999999,
594
+ "grad_norm": 0.306640625,
595
+ "learning_rate": 0.0001,
596
+ "loss": 0.6299,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 1.3599999999999999,
601
+ "grad_norm": 0.361328125,
602
+ "learning_rate": 0.0001,
603
+ "loss": 0.6215,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 1.376,
608
+ "grad_norm": 0.310546875,
609
+ "learning_rate": 0.0001,
610
+ "loss": 0.5869,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 1.392,
615
+ "grad_norm": 0.2255859375,
616
+ "learning_rate": 0.0001,
617
+ "loss": 0.5448,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 1.408,
622
+ "grad_norm": 0.306640625,
623
+ "learning_rate": 0.0001,
624
+ "loss": 0.6038,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 1.424,
629
+ "grad_norm": 0.37890625,
630
+ "learning_rate": 0.0001,
631
+ "loss": 0.5647,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 1.44,
636
+ "grad_norm": 0.26953125,
637
+ "learning_rate": 0.0001,
638
+ "loss": 0.5564,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 1.456,
643
+ "grad_norm": 0.1796875,
644
+ "learning_rate": 0.0001,
645
+ "loss": 0.4994,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 1.472,
650
+ "grad_norm": 0.25,
651
+ "learning_rate": 0.0001,
652
+ "loss": 0.4244,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 1.488,
657
+ "grad_norm": 0.2451171875,
658
+ "learning_rate": 0.0001,
659
+ "loss": 0.4652,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 1.504,
664
+ "grad_norm": 0.2578125,
665
+ "learning_rate": 0.0001,
666
+ "loss": 0.5929,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 1.504,
671
+ "step": 470,
672
+ "total_flos": 2.7094162776644813e+18,
673
+ "train_loss": 0.8028768169119003,
674
+ "train_runtime": 84777.289,
675
+ "train_samples_per_second": 0.355,
676
+ "train_steps_per_second": 0.006
677
+ }
678
+ ],
679
+ "logging_steps": 5,
680
+ "max_steps": 470,
681
+ "num_input_tokens_seen": 0,
682
+ "num_train_epochs": 2,
683
+ "save_steps": 90,
684
+ "stateful_callbacks": {
685
+ "TrainerControl": {
686
+ "args": {
687
+ "should_epoch_stop": false,
688
+ "should_evaluate": false,
689
+ "should_log": false,
690
+ "should_save": true,
691
+ "should_training_stop": true
692
+ },
693
+ "attributes": {}
694
+ }
695
+ },
696
+ "total_flos": 2.7094162776644813e+18,
697
+ "train_batch_size": 4,
698
+ "trial_name": null,
699
+ "trial_params": null
700
+ }
codellama/c/codegen/codegen_c_base/all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5594541910331383,
3
+ "total_flos": 4.824681746497536e+17,
4
+ "train_loss": 0.3312075719833374,
5
+ "train_runtime": 19317.2857,
6
+ "train_samples_per_second": 0.828,
7
+ "train_steps_per_second": 0.013
8
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "down_proj",
26
+ "o_proj",
27
+ "v_proj",
28
+ "gate_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f9af2d97f9cea6e096df2e0b7cd922281bfc951f41b7006ff6d8dd5105ab473
3
+ size 1156480200
codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "down_proj",
26
+ "o_proj",
27
+ "v_proj",
28
+ "gate_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/adapter_model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f9af2d97f9cea6e096df2e0b7cd922281bfc951f41b7006ff6d8dd5105ab473
3
+ size 1156480200
codellama/c/codegen/codegen_c_base/checkpoint-250/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32016
3
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8653c32a777b6dbfaa813b472949171bbc2654cc1d3a2dfff819751361bc9514
3
+ size 2003126962
codellama/c/codegen/codegen_c_base/checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3834587c092125bd201661e37e816cdbd55b1a136077c4e0b1d7944daa54445
3
+ size 14244
codellama/c/codegen/codegen_c_base/checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e30df1bee25ad98e1c721d888a184c00d77649c8e5c8c3b1e8a4c16f9fe7f7ef
3
+ size 1064
codellama/c/codegen/codegen_c_base/checkpoint-250/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "[PAD]",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
codellama/c/codegen/codegen_c_base/checkpoint-250/tokenizer_config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32016": {
62
+ "content": "[PAD]",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ }
69
+ },
70
+ "additional_special_tokens": [
71
+ "▁<PRE>",
72
+ "▁<MID>",
73
+ "▁<SUF>",
74
+ "▁<EOT>"
75
+ ],
76
+ "bos_token": "<s>",
77
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
78
+ "clean_up_tokenization_spaces": false,
79
+ "eos_token": "</s>",
80
+ "eot_token": "▁<EOT>",
81
+ "fill_token": "<FILL_ME>",
82
+ "legacy": null,
83
+ "middle_token": "▁<MID>",
84
+ "model_max_length": 1000000000000000019884624838656,
85
+ "pad_token": "[PAD]",
86
+ "padding_side": "right",
87
+ "prefix_token": "▁<PRE>",
88
+ "sp_model_kwargs": {},
89
+ "suffix_first": false,
90
+ "suffix_token": "▁<SUF>",
91
+ "tokenizer_class": "CodeLlamaTokenizer",
92
+ "unk_token": "<unk>",
93
+ "use_default_system_prompt": false
94
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5594541910331383,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.031189083820662766,
13
+ "grad_norm": 0.0576171875,
14
+ "learning_rate": 0.0001,
15
+ "loss": 0.674,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.06237816764132553,
20
+ "grad_norm": 0.052490234375,
21
+ "learning_rate": 0.0001,
22
+ "loss": 0.5118,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.0935672514619883,
27
+ "grad_norm": 0.03857421875,
28
+ "learning_rate": 0.0001,
29
+ "loss": 0.4572,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.12475633528265107,
34
+ "grad_norm": 0.039794921875,
35
+ "learning_rate": 0.0001,
36
+ "loss": 0.4645,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.15594541910331383,
41
+ "grad_norm": 0.0537109375,
42
+ "learning_rate": 0.0001,
43
+ "loss": 0.4772,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.1871345029239766,
48
+ "grad_norm": 0.059814453125,
49
+ "learning_rate": 0.0001,
50
+ "loss": 0.4466,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.21832358674463936,
55
+ "grad_norm": 0.0478515625,
56
+ "learning_rate": 0.0001,
57
+ "loss": 0.4365,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.24951267056530213,
62
+ "grad_norm": 0.138671875,
63
+ "learning_rate": 0.0001,
64
+ "loss": 0.4622,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.2807017543859649,
69
+ "grad_norm": 0.046875,
70
+ "learning_rate": 0.0001,
71
+ "loss": 0.3409,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.31189083820662766,
76
+ "grad_norm": 0.0289306640625,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.3158,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.34307992202729043,
83
+ "grad_norm": 0.029541015625,
84
+ "learning_rate": 0.0001,
85
+ "loss": 0.3236,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.3742690058479532,
90
+ "grad_norm": 0.0274658203125,
91
+ "learning_rate": 0.0001,
92
+ "loss": 0.3273,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.40545808966861596,
97
+ "grad_norm": 0.031494140625,
98
+ "learning_rate": 0.0001,
99
+ "loss": 0.3142,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.43664717348927873,
104
+ "grad_norm": 0.0269775390625,
105
+ "learning_rate": 0.0001,
106
+ "loss": 0.3276,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.4678362573099415,
111
+ "grad_norm": 0.02978515625,
112
+ "learning_rate": 0.0001,
113
+ "loss": 0.334,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.49902534113060426,
118
+ "grad_norm": 0.0703125,
119
+ "learning_rate": 0.0001,
120
+ "loss": 0.356,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.530214424951267,
125
+ "grad_norm": 0.03271484375,
126
+ "learning_rate": 0.0001,
127
+ "loss": 0.3176,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.5614035087719298,
132
+ "grad_norm": 0.0322265625,
133
+ "learning_rate": 0.0001,
134
+ "loss": 0.2829,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.5925925925925926,
139
+ "grad_norm": 0.02587890625,
140
+ "learning_rate": 0.0001,
141
+ "loss": 0.2984,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.6237816764132553,
146
+ "grad_norm": 0.0296630859375,
147
+ "learning_rate": 0.0001,
148
+ "loss": 0.3067,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.6549707602339181,
153
+ "grad_norm": 0.0264892578125,
154
+ "learning_rate": 0.0001,
155
+ "loss": 0.2979,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.6861598440545809,
160
+ "grad_norm": 0.02783203125,
161
+ "learning_rate": 0.0001,
162
+ "loss": 0.3012,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.7173489278752436,
167
+ "grad_norm": 0.031494140625,
168
+ "learning_rate": 0.0001,
169
+ "loss": 0.3222,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.7485380116959064,
174
+ "grad_norm": 0.06982421875,
175
+ "learning_rate": 0.0001,
176
+ "loss": 0.3439,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.7797270955165692,
181
+ "grad_norm": 0.031982421875,
182
+ "learning_rate": 0.0001,
183
+ "loss": 0.2875,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.8109161793372319,
188
+ "grad_norm": 0.029296875,
189
+ "learning_rate": 0.0001,
190
+ "loss": 0.2803,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.8421052631578947,
195
+ "grad_norm": 0.029541015625,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.2999,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.8732943469785575,
202
+ "grad_norm": 0.02734375,
203
+ "learning_rate": 0.0001,
204
+ "loss": 0.2986,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.9044834307992202,
209
+ "grad_norm": 0.028076171875,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.302,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.935672514619883,
216
+ "grad_norm": 0.0322265625,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.2936,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.9668615984405458,
223
+ "grad_norm": 0.034423828125,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.3017,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.9980506822612085,
230
+ "grad_norm": 0.060546875,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.3486,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 1.0292397660818713,
237
+ "grad_norm": 0.033935546875,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.2867,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 1.060428849902534,
244
+ "grad_norm": 0.031494140625,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.2628,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 1.0916179337231968,
251
+ "grad_norm": 0.0289306640625,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.278,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 1.1228070175438596,
258
+ "grad_norm": 0.031982421875,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.2915,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 1.1539961013645224,
265
+ "grad_norm": 0.031005859375,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.2902,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 1.1851851851851851,
272
+ "grad_norm": 0.03271484375,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.2785,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 1.2163742690058479,
279
+ "grad_norm": 0.042236328125,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.295,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 1.2475633528265107,
286
+ "grad_norm": 0.05615234375,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.3039,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 1.2787524366471734,
293
+ "grad_norm": 0.03759765625,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.2725,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 1.3099415204678362,
300
+ "grad_norm": 0.035400390625,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.2738,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 1.341130604288499,
307
+ "grad_norm": 0.031494140625,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.2861,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 1.3723196881091617,
314
+ "grad_norm": 0.036865234375,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.2859,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 1.4035087719298245,
321
+ "grad_norm": 0.03515625,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.285,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 1.4346978557504872,
328
+ "grad_norm": 0.03466796875,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.2713,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 1.46588693957115,
335
+ "grad_norm": 0.042724609375,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.2982,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 1.4970760233918128,
342
+ "grad_norm": 0.0673828125,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.3026,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 1.5282651072124755,
349
+ "grad_norm": 0.04150390625,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.2916,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 1.5594541910331383,
356
+ "grad_norm": 0.034912109375,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.2548,
359
+ "step": 250
360
+ }
361
+ ],
362
+ "logging_steps": 5,
363
+ "max_steps": 250,
364
+ "num_input_tokens_seen": 0,
365
+ "num_train_epochs": 2,
366
+ "save_steps": 90,
367
+ "stateful_callbacks": {
368
+ "TrainerControl": {
369
+ "args": {
370
+ "should_epoch_stop": false,
371
+ "should_evaluate": false,
372
+ "should_log": false,
373
+ "should_save": true,
374
+ "should_training_stop": true
375
+ },
376
+ "attributes": {}
377
+ }
378
+ },
379
+ "total_flos": 4.824681746497536e+17,
380
+ "train_batch_size": 4,
381
+ "trial_name": null,
382
+ "trial_params": null
383
+ }
codellama/c/codegen/codegen_c_base/checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8bc8838bb382bdcbf063c18ead9f8633ed8301a08e8edced773ee484a51f89a
3
+ size 7416
codellama/c/codegen/codegen_c_base/completed ADDED
File without changes
codellama/c/codegen/codegen_c_base/metrics.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"run_name": "codegen_c_base", "train_runtime": 19317.2857, "train_samples_per_second": 0.828, "train_steps_per_second": 0.013, "total_flos": 4.824681746497536e+17, "train_loss": 0.3312075719833374, "epoch": 1.5594541910331383}
codellama/c/codegen/codegen_c_base/train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5594541910331383,
3
+ "total_flos": 4.824681746497536e+17,
4
+ "train_loss": 0.3312075719833374,
5
+ "train_runtime": 19317.2857,
6
+ "train_samples_per_second": 0.828,
7
+ "train_steps_per_second": 0.013
8
+ }
codellama/c/codegen/codegen_c_base/trainer_state.json ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5594541910331383,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.031189083820662766,
13
+ "grad_norm": 0.0576171875,
14
+ "learning_rate": 0.0001,
15
+ "loss": 0.674,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.06237816764132553,
20
+ "grad_norm": 0.052490234375,
21
+ "learning_rate": 0.0001,
22
+ "loss": 0.5118,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.0935672514619883,
27
+ "grad_norm": 0.03857421875,
28
+ "learning_rate": 0.0001,
29
+ "loss": 0.4572,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.12475633528265107,
34
+ "grad_norm": 0.039794921875,
35
+ "learning_rate": 0.0001,
36
+ "loss": 0.4645,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.15594541910331383,
41
+ "grad_norm": 0.0537109375,
42
+ "learning_rate": 0.0001,
43
+ "loss": 0.4772,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.1871345029239766,
48
+ "grad_norm": 0.059814453125,
49
+ "learning_rate": 0.0001,
50
+ "loss": 0.4466,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.21832358674463936,
55
+ "grad_norm": 0.0478515625,
56
+ "learning_rate": 0.0001,
57
+ "loss": 0.4365,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.24951267056530213,
62
+ "grad_norm": 0.138671875,
63
+ "learning_rate": 0.0001,
64
+ "loss": 0.4622,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.2807017543859649,
69
+ "grad_norm": 0.046875,
70
+ "learning_rate": 0.0001,
71
+ "loss": 0.3409,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.31189083820662766,
76
+ "grad_norm": 0.0289306640625,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.3158,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.34307992202729043,
83
+ "grad_norm": 0.029541015625,
84
+ "learning_rate": 0.0001,
85
+ "loss": 0.3236,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.3742690058479532,
90
+ "grad_norm": 0.0274658203125,
91
+ "learning_rate": 0.0001,
92
+ "loss": 0.3273,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.40545808966861596,
97
+ "grad_norm": 0.031494140625,
98
+ "learning_rate": 0.0001,
99
+ "loss": 0.3142,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.43664717348927873,
104
+ "grad_norm": 0.0269775390625,
105
+ "learning_rate": 0.0001,
106
+ "loss": 0.3276,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.4678362573099415,
111
+ "grad_norm": 0.02978515625,
112
+ "learning_rate": 0.0001,
113
+ "loss": 0.334,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.49902534113060426,
118
+ "grad_norm": 0.0703125,
119
+ "learning_rate": 0.0001,
120
+ "loss": 0.356,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.530214424951267,
125
+ "grad_norm": 0.03271484375,
126
+ "learning_rate": 0.0001,
127
+ "loss": 0.3176,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.5614035087719298,
132
+ "grad_norm": 0.0322265625,
133
+ "learning_rate": 0.0001,
134
+ "loss": 0.2829,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.5925925925925926,
139
+ "grad_norm": 0.02587890625,
140
+ "learning_rate": 0.0001,
141
+ "loss": 0.2984,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.6237816764132553,
146
+ "grad_norm": 0.0296630859375,
147
+ "learning_rate": 0.0001,
148
+ "loss": 0.3067,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.6549707602339181,
153
+ "grad_norm": 0.0264892578125,
154
+ "learning_rate": 0.0001,
155
+ "loss": 0.2979,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.6861598440545809,
160
+ "grad_norm": 0.02783203125,
161
+ "learning_rate": 0.0001,
162
+ "loss": 0.3012,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.7173489278752436,
167
+ "grad_norm": 0.031494140625,
168
+ "learning_rate": 0.0001,
169
+ "loss": 0.3222,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.7485380116959064,
174
+ "grad_norm": 0.06982421875,
175
+ "learning_rate": 0.0001,
176
+ "loss": 0.3439,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.7797270955165692,
181
+ "grad_norm": 0.031982421875,
182
+ "learning_rate": 0.0001,
183
+ "loss": 0.2875,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.8109161793372319,
188
+ "grad_norm": 0.029296875,
189
+ "learning_rate": 0.0001,
190
+ "loss": 0.2803,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.8421052631578947,
195
+ "grad_norm": 0.029541015625,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.2999,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.8732943469785575,
202
+ "grad_norm": 0.02734375,
203
+ "learning_rate": 0.0001,
204
+ "loss": 0.2986,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.9044834307992202,
209
+ "grad_norm": 0.028076171875,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.302,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.935672514619883,
216
+ "grad_norm": 0.0322265625,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.2936,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.9668615984405458,
223
+ "grad_norm": 0.034423828125,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.3017,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.9980506822612085,
230
+ "grad_norm": 0.060546875,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.3486,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 1.0292397660818713,
237
+ "grad_norm": 0.033935546875,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.2867,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 1.060428849902534,
244
+ "grad_norm": 0.031494140625,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.2628,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 1.0916179337231968,
251
+ "grad_norm": 0.0289306640625,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.278,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 1.1228070175438596,
258
+ "grad_norm": 0.031982421875,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.2915,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 1.1539961013645224,
265
+ "grad_norm": 0.031005859375,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.2902,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 1.1851851851851851,
272
+ "grad_norm": 0.03271484375,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.2785,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 1.2163742690058479,
279
+ "grad_norm": 0.042236328125,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.295,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 1.2475633528265107,
286
+ "grad_norm": 0.05615234375,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.3039,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 1.2787524366471734,
293
+ "grad_norm": 0.03759765625,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.2725,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 1.3099415204678362,
300
+ "grad_norm": 0.035400390625,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.2738,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 1.341130604288499,
307
+ "grad_norm": 0.031494140625,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.2861,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 1.3723196881091617,
314
+ "grad_norm": 0.036865234375,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.2859,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 1.4035087719298245,
321
+ "grad_norm": 0.03515625,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.285,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 1.4346978557504872,
328
+ "grad_norm": 0.03466796875,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.2713,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 1.46588693957115,
335
+ "grad_norm": 0.042724609375,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.2982,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 1.4970760233918128,
342
+ "grad_norm": 0.0673828125,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.3026,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 1.5282651072124755,
349
+ "grad_norm": 0.04150390625,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.2916,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 1.5594541910331383,
356
+ "grad_norm": 0.034912109375,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.2548,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 1.5594541910331383,
363
+ "step": 250,
364
+ "total_flos": 4.824681746497536e+17,
365
+ "train_loss": 0.3312075719833374,
366
+ "train_runtime": 19317.2857,
367
+ "train_samples_per_second": 0.828,
368
+ "train_steps_per_second": 0.013
369
+ }
370
+ ],
371
+ "logging_steps": 5,
372
+ "max_steps": 250,
373
+ "num_input_tokens_seen": 0,
374
+ "num_train_epochs": 2,
375
+ "save_steps": 90,
376
+ "stateful_callbacks": {
377
+ "TrainerControl": {
378
+ "args": {
379
+ "should_epoch_stop": false,
380
+ "should_evaluate": false,
381
+ "should_log": false,
382
+ "should_save": true,
383
+ "should_training_stop": true
384
+ },
385
+ "attributes": {}
386
+ }
387
+ },
388
+ "total_flos": 4.824681746497536e+17,
389
+ "train_batch_size": 4,
390
+ "trial_name": null,
391
+ "trial_params": null
392
+ }
codellama/c/codegen/codegen_c_callgraph/all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5594541910331383,
3
+ "total_flos": 4.824681746497536e+17,
4
+ "train_loss": 0.3939001045227051,
5
+ "train_runtime": 16242.9143,
6
+ "train_samples_per_second": 0.985,
7
+ "train_steps_per_second": 0.015
8
+ }
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "gate_proj",
25
+ "v_proj",
26
+ "q_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9182b2abad902e36d0f55bf5bca9fd4e5fffabf8e756938acd3954b72bc17e48
3
+ size 1156480200
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeLlama-13b-Instruct-hf/
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "CodeLlama-13b-Instruct-hf/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "gate_proj",
25
+ "v_proj",
26
+ "q_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/adapter_model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9182b2abad902e36d0f55bf5bca9fd4e5fffabf8e756938acd3954b72bc17e48
3
+ size 1156480200
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32016
3
+ }
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9f9314ec224f5aec674269a51250a37ed01edf26ef196969694857ec69647f0
3
+ size 2003126962
codellama/c/codegen/codegen_c_callgraph/checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3834587c092125bd201661e37e816cdbd55b1a136077c4e0b1d7944daa54445
3
+ size 14244