File size: 6,651 Bytes
ee622f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57b11d
ee622f8
89d2039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee622f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
license: other
datasets:
- imagenet-1k
metrics:
- accuracy
library_name: mlx
pipeline_tag: image-classification
tags:
- large-scale-vision-models
- pytorch
- mlx
- jax
- vision
- ssl
- pre-training
- DFN
---
# AIM: Autoregressive Image Models

*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
Joshua M Susskind, and Armand Joulin*


This software project accompanies the research paper, Scalable Pre-training of Large Autoregressive Image Models.

We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective.
We show that autoregressive pre-training of image features exhibits similar scaling properties to their
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings:
1. the model capacity can be trivially scaled to billions of parameters, and
2. AIM effectively leverages large collections of uncurated image data.

## Installation
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/).
Afterward, install the package as:
```commandline
pip install git+https://[email protected]/apple/ml-aim.git
```
We also offer [MLX](https://github.com/ml-explore/mlx) backend support for research and experimentation on Apple silicon.
To enable MLX support, simply run:
```commandline
pip install mlx
```

## Usage
Below we provide an example of usage in [PyTorch](https://pytorch.org/):
```python
from PIL import Image

from aim.utils import load_pretrained
from aim.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aim-600M-2B-imgs", backend="torch")
transform = val_transforms()

inp = transform(img).unsqueeze(0)
logits, _ = model(inp)
```

<details>
<summary>and in both <a href="https://ml-explore.github.io/mlx/">MLX</a></summary>

```python
from PIL import Image
import mlx.core as mx

from aim.utils import load_pretrained
from aim.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aim-600M-2B-imgs", backend="mlx")
transform = val_transforms()

inp = transform(img).unsqueeze(0)
inp = mx.array(inp.numpy())
logits, _ = model(inp)
```
</details>

<details>
<summary>and <a href="https://jax.readthedocs.io/">JAX</a></summary>

```python
from PIL import Image
import jax.numpy as jnp

from aim.utils import load_pretrained
from aim.torch.data import val_transforms

img = Image.open(...)
model, params = load_pretrained("aim-600M-2B-imgs", backend="jax")
transform = val_transforms()

inp = transform(img).unsqueeze(0)
inp = jnp.array(inp)
(logits, _), _ = model.apply(params, inp, mutable=['batch_stats'])
```
</details>


## Pre-trained checkpoints

The pre-trained models can be accessed via [PyTorch Hub](https://pytorch.org/hub/) as:
```python
import torch

aim_600m = torch.hub.load("apple/ml-aim", "aim-600M")
aim_1b   = torch.hub.load("apple/ml-aim", "aim-1B")
aim_3b   = torch.hub.load("apple/ml-aim", "aim-3B")
aim_7b   = torch.hub.load("apple/ml-aim", "aim-7B")
```

### Pre-trained backbones

The following table contains pre-trained backbones used in our paper.

<table style="margin: auto">
  <thead>
    <tr>
      <th>model</th>
      <th>#params</th>
      <th>attn (best layer)</th>
      <th>backbone, SHA256</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>AIM-0.6B</td>
      <td>0.6B</td>
      <td>79.4%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_backbone.pth">link</a>, 0d6f6b8f</td>
    </tr>
    <tr>
      <td>AIM-1B</td>
      <td>1B</td>
      <td>82.3%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_backbone.pth">link</a>, d254ecd3</td>
    </tr>
    <tr>
      <td>AIM-3B</td>
      <td>3B</td>
      <td>83.3%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_backbone.pth">link</a>, 8475ce4e</td>
    </tr>
    <tr>
      <td>AIM-7B</td>
      <td>7B</td>
      <td>84.0%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_backbone.pth">link</a>, 184ed94c</td>
    </tr>
  </tbody>
</table>

### Pre-trained attention heads

The table below contains the classification results on ImageNet-1k validation set.

<table style="margin: auto">
  <thead>
    <tr>
      <th rowspan="2">model</th>
      <th colspan="2">top-1 IN-1k</th>
      <th colspan="2">attention head, SHA256</th>
    </tr>
    <tr>
      <th>last layer</th>
      <th>best layer</th>
      <th>last layer</th>
      <th>best layer</th>
    </tr>
  </thead>

  <tbody>
    <tr>
      <td>AIM-0.6B</td>
      <td>78.5%</td>
      <td>79.4%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_head_last_layers.pth">link</a>, 5ce5a341</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_head_best_layers.pth">link</a>, ebd45c05</td>
    </tr>
    <tr>
      <td>AIM-1B</td>
      <td>80.6%</td>
      <td>82.3%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_head_last_layers.pth">link</a>, db3be2ad</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_head_best_layers.pth">link</a>, f1ed7852</td>
    </tr>
    <tr>
      <td>AIM-3B</td>
      <td>82.2%</td>
      <td>83.3%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_head_last_layers.pth">link</a>, 5c057b30</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_head_best_layers.pth">link</a>, ad380e16</td>
    </tr>
    <tr>
      <td>AIM-7B</td>
      <td>82.4%</td>
      <td>84.0%</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_head_last_layers.pth">link</a>, 1e5c99ba</td>
      <td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_head_best_layers.pth">link</a>, 73ecd732</td>
    </tr>
  </tbody>
</table>

## Reproducing the IN-1k classification results
The commands below reproduce the [attention probe results](#pre-trained-attention-heads) on ImageNet-1k
validation set. We run the evaluation using 1 node with 8 GPUs:
```commandline
torchrun --standalone --nnodes=1 --nproc-per-node=8 main_attnprobe.py \
  --model=aim-7B \
  --batch-size=64 \
  --data-path=/path/to/imagenet \
  --probe-layers=last \
  --backbone-ckpt-path=/path/to/backbone_ckpt.pth \
  --head-ckpt-path=/path/to/head_ckpt.pth
```
By default, we probe the last 6 layers. To change this, simply pass `--probe-layers=best`.