--- license: other license_name: apple-sample-code-license license_link: LICENSE --- A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-5B. Data Filtering Networks (DFNs) are small used to automatically filter large pools of uncurated data. This model was trained on 5B images that were filtered from a pool of 43B uncurated image-text pairs (12.8B image-text pairs from CommonPool-12.8B + 30B additional public image-text pairs). This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn). These weights are directly usable in OpenCLIP (image + text). ## Model Details - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. - **Dataset:** DFN-5b - **Papers:** - Data Filtering Networks: https://arxiv.org/abs/2309.17425 - **Samples Seen:** 39B ## Model Metrics | Eval Dataset | Metric | |:-----------------------|---------:| | ImageNet 1k | 0.8344 | | Caltech-101 | 0.954935 | | CIFAR-10 | 0.9878 | | CIFAR-100 | 0.9051 | | CLEVR Counts | 0.2966 | | CLEVR Distance | 0.2124 | | Country211 | 0.343981 | | Describable Textures | 0.706383 | | EuroSAT | 0.654815 | | FGVC Aircraft | 0.714055 | | Food-101 | 0.956792 | | GTSRB | 0.677514 | | ImageNet Sketch | 0.727308 | | ImageNet v2 | 0.773 | | ImageNet-A | 0.6988 | | ImageNet-O | 0.381 | | ImageNet-R | 0.929367 | | KITTI Vehicle Distance | 0.336146 | | MNIST | 0.8579 | | ObjectNet | 0.681275 | | Oxford Flowers-102 | 0.899534 | | Oxford-IIIT Pet | 0.965515 | | Pascal VOC 2007 | 0.818309 | | PatchCamelyon | 0.653625 | | Rendered SST2 | 0.546403 | | RESISC45 | 0.750476 | | Stanford Cars | 0.957592 | | STL-10 | 0.989 | | SUN397 | 0.769149 | | SVHN | 0.676168 | | Flickr | 0.8645 | | MSCOCO | 0.631112 | | WinoGAViL | 0.556329 | | iWildCam | 0.205549 | | Camelyon17 | 0.705034 | | FMoW | 0.207482 | | Dollar Street | 0.699766 | | GeoDE | 0.928184 | | **Average** |**0.696139** | ## Model Usage ### With OpenCLIP ``` import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14') tokenizer = get_tokenizer('ViT-H-14') image = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) labels_list = ["a dog", "a cat", "a donut", "a beignet"] text = tokenizer(labels_list, context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) print("Label probabilities: ", zipped_list) ``` ## Citation ```bibtex @article{fang2023data, title={Data Filtering Networks}, author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal}, journal={arXiv preprint arXiv:2309.17425}, year={2023} } ```