mahyar-najibi
commited on
Commit
·
771d259
1
Parent(s):
1186dc1
Updating generate_openelm.py and README.
Browse files- README.md +6 -5
- generate_openelm.py +38 -42
README.md
CHANGED
@@ -20,16 +20,17 @@ We have provided an example function to generate output from OpenELM models load
|
|
20 |
|
21 |
You can try the model by running the following command:
|
22 |
```
|
23 |
-
python generate_openelm.py --
|
24 |
```
|
|
|
25 |
|
26 |
-
Additional arguments to the
|
27 |
```
|
28 |
-
python generate_openelm.py --
|
29 |
```
|
30 |
-
Alternatively, model-wise speculative generation can be also tried by passing a smaller model
|
31 |
```
|
32 |
-
python generate_openelm.py --
|
33 |
```
|
34 |
|
35 |
|
|
|
20 |
|
21 |
You can try the model by running the following command:
|
22 |
```
|
23 |
+
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
|
24 |
```
|
25 |
+
Please refer to [this link](https://huggingface.co/docs/hub/security-tokens) to obtain your hugging face access token.
|
26 |
|
27 |
+
Additional arguments to the hugging face generate function can be passed via `generate_kwargs`. As an example, to speedup the inference, you can try [lookup token speculative generation](https://huggingface.co/docs/transformers/generation_strategies) by passing the `prompt_lookup_num_tokens` argument as follows:
|
28 |
```
|
29 |
+
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
|
30 |
```
|
31 |
+
Alternatively, model-wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted-generation) can be also tried by passing a smaller model model through the `assistant_model` argument, for example:
|
32 |
```
|
33 |
+
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model apple/OpenELM-270M
|
34 |
```
|
35 |
|
36 |
|
generate_openelm.py
CHANGED
@@ -12,11 +12,11 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
12 |
def generate(
|
13 |
prompt: str,
|
14 |
model: Union[str, AutoModelForCausalLM],
|
15 |
-
|
16 |
tokenizer: Union[str, AutoTokenizer] = 'meta-llama/Llama-2-7b-hf',
|
17 |
device: Optional[str] = None,
|
18 |
max_length: int = 1024,
|
19 |
-
|
20 |
generate_kwargs: Optional[dict] = None,
|
21 |
) -> str:
|
22 |
""" Generates output given a prompt.
|
@@ -25,16 +25,16 @@ def generate(
|
|
25 |
prompt: The string prompt.
|
26 |
model: The LLM Model. If a string is passed, it should be the path to
|
27 |
the hf converted checkpoint.
|
28 |
-
|
29 |
tokenizer: Tokenizer instance. If model is set as a string path,
|
30 |
the tokenizer will be loaded from the checkpoint.
|
31 |
device: String representation of device to run the model on. If None
|
32 |
and cuda available it would be set to cuda:0 else cpu.
|
33 |
max_length: Maximum length of tokens, input prompt + generated tokens.
|
34 |
-
|
35 |
speculative generation. If a string is passed, it should be the
|
36 |
path to the hf converted checkpoint.
|
37 |
-
generate_kwargs: Extra kwargs passed to the generate function.
|
38 |
|
39 |
Returns:
|
40 |
output_text: output generated as a string.
|
@@ -42,9 +42,8 @@ def generate(
|
|
42 |
|
43 |
Raises:
|
44 |
ValueError: If device is set to CUDA but no CUDA device is detected.
|
45 |
-
|
46 |
-
|
47 |
-
ValueError: If hf_security_token is not specified.
|
48 |
"""
|
49 |
if not device:
|
50 |
if torch.cuda.is_available() and torch.cuda.device_count():
|
@@ -55,28 +54,22 @@ def generate(
|
|
55 |
)
|
56 |
else:
|
57 |
device = 'cpu'
|
58 |
-
logging.warning(
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if 'cuda' in device and not torch.cuda.is_available():
|
61 |
raise ValueError('CUDA device requested but no CUDA device detected.')
|
62 |
|
63 |
-
if
|
64 |
-
raise FileNotFoundError(f'Model checkpoint does not exist at {model}.')
|
65 |
-
|
66 |
-
if (isinstance(speculative_model, str) and (
|
67 |
-
not speculative_model and not os.path.exists(speculative_model))):
|
68 |
-
raise FileNotFoundError(
|
69 |
-
(
|
70 |
-
'Speculative checkpoint path does not exist at '
|
71 |
-
f'{speculative_model}.'
|
72 |
-
)
|
73 |
-
)
|
74 |
-
if not tokenizer and not isinstance(model, str):
|
75 |
raise ValueError('Tokenizer is not set in the generate function.')
|
76 |
|
77 |
-
if not
|
78 |
raise ValueError((
|
79 |
-
'Hugging face
|
80 |
'Please refer to https://huggingface.co/docs/hub/security-tokens'
|
81 |
' to obtain one.'
|
82 |
)
|
@@ -92,16 +85,16 @@ def generate(
|
|
92 |
if isinstance(tokenizer, str):
|
93 |
tokenizer = AutoTokenizer.from_pretrained(
|
94 |
tokenizer,
|
95 |
-
token=
|
96 |
)
|
97 |
|
98 |
# Speculative mode
|
99 |
draft_model = None
|
100 |
-
if
|
101 |
-
draft_model =
|
102 |
-
if isinstance(
|
103 |
draft_model = AutoModelForCausalLM.from_pretrained(
|
104 |
-
|
105 |
trust_remote_code=True
|
106 |
)
|
107 |
draft_model.to(device).eval()
|
@@ -161,22 +154,22 @@ def openelm_generate_parser():
|
|
161 |
|
162 |
parser = argparse.ArgumentParser('OpenELM Generate Module')
|
163 |
parser.add_argument(
|
164 |
-
'--
|
165 |
-
dest='
|
166 |
-
help='Path to the
|
167 |
required=True,
|
168 |
type=str,
|
169 |
)
|
170 |
parser.add_argument(
|
171 |
-
'--
|
172 |
-
dest='
|
173 |
-
help='
|
174 |
type=str,
|
175 |
)
|
176 |
parser.add_argument(
|
177 |
'--prompt',
|
178 |
dest='prompt',
|
179 |
-
help='Prompt for LLM call.
|
180 |
default='',
|
181 |
type=str,
|
182 |
)
|
@@ -194,17 +187,20 @@ def openelm_generate_parser():
|
|
194 |
type=int,
|
195 |
)
|
196 |
parser.add_argument(
|
197 |
-
'--
|
198 |
-
dest='
|
199 |
help=(
|
200 |
-
|
|
|
|
|
|
|
201 |
),
|
202 |
type=str,
|
203 |
)
|
204 |
parser.add_argument(
|
205 |
'--generate_kwargs',
|
206 |
dest='generate_kwargs',
|
207 |
-
help='
|
208 |
type=str,
|
209 |
nargs='*',
|
210 |
action=KwargsParser,
|
@@ -218,12 +214,12 @@ if __name__ == '__main__':
|
|
218 |
|
219 |
output_text, genertaion_time = generate(
|
220 |
prompt=prompt,
|
221 |
-
model=args.
|
222 |
device=args.device,
|
223 |
max_length=args.max_length,
|
224 |
-
|
225 |
generate_kwargs=args.generate_kwargs,
|
226 |
-
|
227 |
)
|
228 |
|
229 |
print_txt = (
|
|
|
12 |
def generate(
|
13 |
prompt: str,
|
14 |
model: Union[str, AutoModelForCausalLM],
|
15 |
+
hf_access_token: str = None,
|
16 |
tokenizer: Union[str, AutoTokenizer] = 'meta-llama/Llama-2-7b-hf',
|
17 |
device: Optional[str] = None,
|
18 |
max_length: int = 1024,
|
19 |
+
assistant_model: Optional[Union[str, AutoModelForCausalLM]] = None,
|
20 |
generate_kwargs: Optional[dict] = None,
|
21 |
) -> str:
|
22 |
""" Generates output given a prompt.
|
|
|
25 |
prompt: The string prompt.
|
26 |
model: The LLM Model. If a string is passed, it should be the path to
|
27 |
the hf converted checkpoint.
|
28 |
+
hf_access_token: Hugging face access token.
|
29 |
tokenizer: Tokenizer instance. If model is set as a string path,
|
30 |
the tokenizer will be loaded from the checkpoint.
|
31 |
device: String representation of device to run the model on. If None
|
32 |
and cuda available it would be set to cuda:0 else cpu.
|
33 |
max_length: Maximum length of tokens, input prompt + generated tokens.
|
34 |
+
assistant_model: If set, this model will be used for
|
35 |
speculative generation. If a string is passed, it should be the
|
36 |
path to the hf converted checkpoint.
|
37 |
+
generate_kwargs: Extra kwargs passed to the hf generate function.
|
38 |
|
39 |
Returns:
|
40 |
output_text: output generated as a string.
|
|
|
42 |
|
43 |
Raises:
|
44 |
ValueError: If device is set to CUDA but no CUDA device is detected.
|
45 |
+
ValueError: If tokenizer is not set.
|
46 |
+
ValueError: If hf_access_token is not specified.
|
|
|
47 |
"""
|
48 |
if not device:
|
49 |
if torch.cuda.is_available() and torch.cuda.device_count():
|
|
|
54 |
)
|
55 |
else:
|
56 |
device = 'cpu'
|
57 |
+
logging.warning(
|
58 |
+
(
|
59 |
+
'No CUDA device detected, using cpu, '
|
60 |
+
'expect slower speeds.'
|
61 |
+
)
|
62 |
+
)
|
63 |
|
64 |
if 'cuda' in device and not torch.cuda.is_available():
|
65 |
raise ValueError('CUDA device requested but no CUDA device detected.')
|
66 |
|
67 |
+
if not tokenizer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
raise ValueError('Tokenizer is not set in the generate function.')
|
69 |
|
70 |
+
if not hf_access_token:
|
71 |
raise ValueError((
|
72 |
+
'Hugging face access token needs to be specified. '
|
73 |
'Please refer to https://huggingface.co/docs/hub/security-tokens'
|
74 |
' to obtain one.'
|
75 |
)
|
|
|
85 |
if isinstance(tokenizer, str):
|
86 |
tokenizer = AutoTokenizer.from_pretrained(
|
87 |
tokenizer,
|
88 |
+
token=hf_access_token,
|
89 |
)
|
90 |
|
91 |
# Speculative mode
|
92 |
draft_model = None
|
93 |
+
if assistant_model:
|
94 |
+
draft_model = assistant_model
|
95 |
+
if isinstance(assistant_model, str):
|
96 |
draft_model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
assistant_model,
|
98 |
trust_remote_code=True
|
99 |
)
|
100 |
draft_model.to(device).eval()
|
|
|
154 |
|
155 |
parser = argparse.ArgumentParser('OpenELM Generate Module')
|
156 |
parser.add_argument(
|
157 |
+
'--model',
|
158 |
+
dest='model',
|
159 |
+
help='Path to the hf converted model.',
|
160 |
required=True,
|
161 |
type=str,
|
162 |
)
|
163 |
parser.add_argument(
|
164 |
+
'--hf_access_token',
|
165 |
+
dest='hf_access_token',
|
166 |
+
help='Hugging face access token, starting with "hf_".',
|
167 |
type=str,
|
168 |
)
|
169 |
parser.add_argument(
|
170 |
'--prompt',
|
171 |
dest='prompt',
|
172 |
+
help='Prompt for LLM call.',
|
173 |
default='',
|
174 |
type=str,
|
175 |
)
|
|
|
187 |
type=int,
|
188 |
)
|
189 |
parser.add_argument(
|
190 |
+
'--assistant_model',
|
191 |
+
dest='assistant_model',
|
192 |
help=(
|
193 |
+
(
|
194 |
+
'If set, this is used as a draft model '
|
195 |
+
'for assisted speculative generation.'
|
196 |
+
)
|
197 |
),
|
198 |
type=str,
|
199 |
)
|
200 |
parser.add_argument(
|
201 |
'--generate_kwargs',
|
202 |
dest='generate_kwargs',
|
203 |
+
help='Additional kwargs passed to the HF generate function.',
|
204 |
type=str,
|
205 |
nargs='*',
|
206 |
action=KwargsParser,
|
|
|
214 |
|
215 |
output_text, genertaion_time = generate(
|
216 |
prompt=prompt,
|
217 |
+
model=args.model,
|
218 |
device=args.device,
|
219 |
max_length=args.max_length,
|
220 |
+
assistant_model=args.assistant_model,
|
221 |
generate_kwargs=args.generate_kwargs,
|
222 |
+
hf_access_token=args.hf_access_token,
|
223 |
)
|
224 |
|
225 |
print_txt = (
|