End of training
Browse files- README.md +15 -15
- model.safetensors +1 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,13 +53,13 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 8
|
58 |
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
- lr_scheduler_type: linear
|
62 |
-
- lr_scheduler_warmup_ratio: 0.
|
63 |
- num_epochs: 10
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
@@ -67,16 +67,16 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
| 1.
|
72 |
-
|
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.6217
|
37 |
+
- Accuracy: 0.8
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 3e-05
|
57 |
- train_batch_size: 8
|
58 |
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.3
|
63 |
- num_epochs: 10
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.2757 | 1.0 | 113 | 2.2336 | 0.26 |
|
71 |
+
| 1.8835 | 2.0 | 226 | 1.8527 | 0.51 |
|
72 |
+
| 1.5749 | 3.0 | 339 | 1.4378 | 0.67 |
|
73 |
+
| 1.1165 | 4.0 | 452 | 1.0610 | 0.74 |
|
74 |
+
| 0.9402 | 5.0 | 565 | 0.9178 | 0.79 |
|
75 |
+
| 0.849 | 6.0 | 678 | 0.7739 | 0.78 |
|
76 |
+
| 0.6661 | 7.0 | 791 | 0.7142 | 0.82 |
|
77 |
+
| 0.4125 | 8.0 | 904 | 0.6851 | 0.82 |
|
78 |
+
| 0.5223 | 9.0 | 1017 | 0.6216 | 0.83 |
|
79 |
+
| 0.393 | 10.0 | 1130 | 0.6217 | 0.8 |
|
80 |
|
81 |
|
82 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f3f705f5091e37512e8f32e16ac381430da60c4c7b87db7d283fa2a161e0d4d
|
3 |
size 94771728
|