File size: 2,010 Bytes
38bf9cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: indosum-seq_bn-rf64-0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indosum-seq_bn-rf64-0

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5046
- Rouge1: 72.0617
- Rouge2: 64.9137
- Rougel: 69.0991
- Rougelsum: 71.1205
- Gen Len: 102.5733

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 0.8386        | 1.0   | 892  | 0.5658          | 68.0586 | 60.6185 | 65.0879 | 67.0846   | 102.556  |
| 0.646         | 2.0   | 1784 | 0.5346          | 69.6096 | 62.3885 | 66.6327 | 68.7343   | 107.088  |
| 0.6031        | 3.0   | 2676 | 0.5019          | 70.498  | 63.0668 | 67.3204 | 69.5075   | 101.6693 |
| 0.5753        | 4.0   | 3568 | 0.5093          | 71.6759 | 64.4776 | 68.7095 | 70.7692   | 104.52   |
| 0.5551        | 5.0   | 4460 | 0.5046          | 72.0617 | 64.9137 | 69.0991 | 71.1205   | 102.5733 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1