--- language: - id license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer datasets: - id_liputan6 metrics: - rouge model-index: - name: liputan6-base results: - task: name: Summarization type: summarization dataset: name: id_liputan6 canonical type: id_liputan6 config: canonical split: validation args: canonical metrics: - name: Rouge1 type: rouge value: 18.1827 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # liputan6-base This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset. It achieves the following results on the evaluation set: - Loss: 5.4266 - Rouge1: 18.1827 - Rouge2: 5.5014 - Rougel: 15.5147 - Rougelsum: 16.9245 - Gen Len: 35.116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8271 | 1.0 | 63 | 3.9787 | 14.5233 | 4.127 | 12.7611 | 13.5205 | 47.473 | | 2.2739 | 2.0 | 126 | 4.1316 | 15.9563 | 4.7752 | 13.8242 | 14.8005 | 44.229 | | 1.2999 | 3.0 | 189 | 4.4850 | 17.2932 | 4.6352 | 14.8582 | 16.1555 | 33.112 | | 0.6423 | 4.0 | 252 | 4.9200 | 17.5707 | 4.9772 | 14.949 | 16.1838 | 36.399 | | 0.2536 | 5.0 | 315 | 5.4266 | 17.698 | 4.7021 | 14.8138 | 16.3595 | 31.108 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1