End of training
Browse files- README.md +22 -7
- all_results.json +29 -0
- eval_results.json +13 -0
- generated_predictions.txt +0 -0
- predict_results.json +12 -0
- train_results.json +9 -0
- trainer_state.json +130 -0
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: LazarusNLP/IndoNanoT5-base
|
4 |
tags:
|
@@ -9,7 +11,20 @@ metrics:
|
|
9 |
- rouge
|
10 |
model-index:
|
11 |
- name: liputan6-unipelt
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# liputan6-unipelt
|
19 |
|
20 |
-
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 3.
|
23 |
-
- Rouge1:
|
24 |
-
- Rouge2:
|
25 |
-
- Rougel:
|
26 |
-
- Rougelsum:
|
27 |
- Gen Len: 127.0
|
28 |
|
29 |
## Model description
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: apache-2.0
|
5 |
base_model: LazarusNLP/IndoNanoT5-base
|
6 |
tags:
|
|
|
11 |
- rouge
|
12 |
model-index:
|
13 |
- name: liputan6-unipelt
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Summarization
|
17 |
+
type: summarization
|
18 |
+
dataset:
|
19 |
+
name: id_liputan6 canonical
|
20 |
+
type: id_liputan6
|
21 |
+
config: canonical
|
22 |
+
split: validation
|
23 |
+
args: canonical
|
24 |
+
metrics:
|
25 |
+
- name: Rouge1
|
26 |
+
type: rouge
|
27 |
+
value: 6.2596
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
# liputan6-unipelt
|
34 |
|
35 |
+
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 3.9181
|
38 |
+
- Rouge1: 6.2596
|
39 |
+
- Rouge2: 1.3631
|
40 |
+
- Rougel: 5.5527
|
41 |
+
- Rougelsum: 5.702
|
42 |
- Gen Len: 127.0
|
43 |
|
44 |
## Model description
|
all_results.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 127.0,
|
4 |
+
"eval_loss": 3.9181036949157715,
|
5 |
+
"eval_rouge1": 6.2596,
|
6 |
+
"eval_rouge2": 1.3631,
|
7 |
+
"eval_rougeL": 5.5527,
|
8 |
+
"eval_rougeLsum": 5.702,
|
9 |
+
"eval_runtime": 3038.3287,
|
10 |
+
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.329,
|
12 |
+
"eval_steps_per_second": 0.011,
|
13 |
+
"predict_gen_len": 127.0,
|
14 |
+
"predict_loss": 3.675906181335449,
|
15 |
+
"predict_rouge1": 8.1435,
|
16 |
+
"predict_rouge2": 1.7586,
|
17 |
+
"predict_rougeL": 6.9904,
|
18 |
+
"predict_rougeLsum": 7.4145,
|
19 |
+
"predict_runtime": 3068.2499,
|
20 |
+
"predict_samples": 1000,
|
21 |
+
"predict_samples_per_second": 0.326,
|
22 |
+
"predict_steps_per_second": 0.01,
|
23 |
+
"total_flos": 3920273141760000.0,
|
24 |
+
"train_loss": 3.429138425796751,
|
25 |
+
"train_runtime": 4104.3672,
|
26 |
+
"train_samples": 1000,
|
27 |
+
"train_samples_per_second": 1.218,
|
28 |
+
"train_steps_per_second": 0.077
|
29 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 127.0,
|
4 |
+
"eval_loss": 3.9181036949157715,
|
5 |
+
"eval_rouge1": 6.2596,
|
6 |
+
"eval_rouge2": 1.3631,
|
7 |
+
"eval_rougeL": 5.5527,
|
8 |
+
"eval_rougeLsum": 5.702,
|
9 |
+
"eval_runtime": 3038.3287,
|
10 |
+
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.329,
|
12 |
+
"eval_steps_per_second": 0.011
|
13 |
+
}
|
generated_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
predict_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_gen_len": 127.0,
|
3 |
+
"predict_loss": 3.675906181335449,
|
4 |
+
"predict_rouge1": 8.1435,
|
5 |
+
"predict_rouge2": 1.7586,
|
6 |
+
"predict_rougeL": 6.9904,
|
7 |
+
"predict_rougeLsum": 7.4145,
|
8 |
+
"predict_runtime": 3068.2499,
|
9 |
+
"predict_samples": 1000,
|
10 |
+
"predict_samples_per_second": 0.326,
|
11 |
+
"predict_steps_per_second": 0.01
|
12 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 3920273141760000.0,
|
4 |
+
"train_loss": 3.429138425796751,
|
5 |
+
"train_runtime": 4104.3672,
|
6 |
+
"train_samples": 1000,
|
7 |
+
"train_samples_per_second": 1.218,
|
8 |
+
"train_steps_per_second": 0.077
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 6.5087,
|
3 |
+
"best_model_checkpoint": "bin/liputan6-unipelt/checkpoint-63",
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 315,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"grad_norm": 1.6662813425064087,
|
14 |
+
"learning_rate": 0.0008,
|
15 |
+
"loss": 4.4282,
|
16 |
+
"step": 63
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_gen_len": 127.0,
|
21 |
+
"eval_loss": 3.9181036949157715,
|
22 |
+
"eval_rouge1": 6.5087,
|
23 |
+
"eval_rouge2": 1.1507,
|
24 |
+
"eval_rougeL": 5.6509,
|
25 |
+
"eval_rougeLsum": 5.8646,
|
26 |
+
"eval_runtime": 719.7468,
|
27 |
+
"eval_samples_per_second": 1.389,
|
28 |
+
"eval_steps_per_second": 0.044,
|
29 |
+
"step": 63
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"grad_norm": 1.9859250783920288,
|
34 |
+
"learning_rate": 0.0006,
|
35 |
+
"loss": 3.5887,
|
36 |
+
"step": 126
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 2.0,
|
40 |
+
"eval_gen_len": 127.0,
|
41 |
+
"eval_loss": 3.7177910804748535,
|
42 |
+
"eval_rouge1": 2.446,
|
43 |
+
"eval_rouge2": 0.2311,
|
44 |
+
"eval_rougeL": 2.2699,
|
45 |
+
"eval_rougeLsum": 2.3165,
|
46 |
+
"eval_runtime": 730.7553,
|
47 |
+
"eval_samples_per_second": 1.368,
|
48 |
+
"eval_steps_per_second": 0.044,
|
49 |
+
"step": 126
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 3.0,
|
53 |
+
"grad_norm": 2.097254991531372,
|
54 |
+
"learning_rate": 0.0004,
|
55 |
+
"loss": 3.2648,
|
56 |
+
"step": 189
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 3.0,
|
60 |
+
"eval_gen_len": 127.0,
|
61 |
+
"eval_loss": 3.648098945617676,
|
62 |
+
"eval_rouge1": 2.5164,
|
63 |
+
"eval_rouge2": 0.1545,
|
64 |
+
"eval_rougeL": 2.3984,
|
65 |
+
"eval_rougeLsum": 2.4483,
|
66 |
+
"eval_runtime": 742.5951,
|
67 |
+
"eval_samples_per_second": 1.347,
|
68 |
+
"eval_steps_per_second": 0.043,
|
69 |
+
"step": 189
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 4.0,
|
73 |
+
"grad_norm": 2.1174938678741455,
|
74 |
+
"learning_rate": 0.0002,
|
75 |
+
"loss": 3.0219,
|
76 |
+
"step": 252
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 4.0,
|
80 |
+
"eval_gen_len": 127.0,
|
81 |
+
"eval_loss": 3.6383612155914307,
|
82 |
+
"eval_rouge1": 1.8155,
|
83 |
+
"eval_rouge2": 0.0676,
|
84 |
+
"eval_rougeL": 1.7586,
|
85 |
+
"eval_rougeLsum": 1.7921,
|
86 |
+
"eval_runtime": 741.1853,
|
87 |
+
"eval_samples_per_second": 1.349,
|
88 |
+
"eval_steps_per_second": 0.043,
|
89 |
+
"step": 252
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 5.0,
|
93 |
+
"grad_norm": 2.148689031600952,
|
94 |
+
"learning_rate": 0.0,
|
95 |
+
"loss": 2.8422,
|
96 |
+
"step": 315
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 5.0,
|
100 |
+
"eval_gen_len": 127.0,
|
101 |
+
"eval_loss": 3.6315574645996094,
|
102 |
+
"eval_rouge1": 1.8166,
|
103 |
+
"eval_rouge2": 0.0438,
|
104 |
+
"eval_rougeL": 1.7867,
|
105 |
+
"eval_rougeLsum": 1.8115,
|
106 |
+
"eval_runtime": 723.9069,
|
107 |
+
"eval_samples_per_second": 1.381,
|
108 |
+
"eval_steps_per_second": 0.044,
|
109 |
+
"step": 315
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 5.0,
|
113 |
+
"step": 315,
|
114 |
+
"total_flos": 3920273141760000.0,
|
115 |
+
"train_loss": 3.429138425796751,
|
116 |
+
"train_runtime": 4104.3672,
|
117 |
+
"train_samples_per_second": 1.218,
|
118 |
+
"train_steps_per_second": 0.077
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"logging_steps": 500,
|
122 |
+
"max_steps": 315,
|
123 |
+
"num_input_tokens_seen": 0,
|
124 |
+
"num_train_epochs": 5,
|
125 |
+
"save_steps": 500,
|
126 |
+
"total_flos": 3920273141760000.0,
|
127 |
+
"train_batch_size": 16,
|
128 |
+
"trial_name": null,
|
129 |
+
"trial_params": null
|
130 |
+
}
|