File size: 5,191 Bytes
2105344
 
61efb60
 
 
2105344
 
 
 
 
 
 
 
 
 
 
 
126d185
2105344
61efb60
 
 
 
 
 
 
 
2105344
 
 
8f517ec
2105344
8f517ec
2105344
8f517ec
 
 
 
2105344
8f517ec
 
 
 
 
 
 
 
2105344
8f517ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105344
8f517ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa4b7c
2105344
 
 
61efb60
 
 
2105344
 
61efb60
 
 
2105344
 
61efb60
2105344
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
language:
- hi
base_model: ar5entum/bart_eng_hin_mt
tags:
- generated_from_trainer
model-index:
- name: bart_eng_hin_mt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_eng_hin_mt

This model is a fine-tuned version of [danasone/bart-small-ru-en](https://huggingface.co/danasone/bart-small-ru-en) on [cfilt/iitb-english-hindi](https://huggingface.co/datasets/cfilt/iitb-english-hindi) dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5147
- eval_model_preparation_time: 0.0051
- eval_bleu: 11.8141
- eval_gen_len: 122.6932
- eval_runtime: 3.6543
- eval_samples_per_second: 142.3
- eval_steps_per_second: 1.642
- step: 0

## Model description

Machine Translation model from English to Hindi on bart small model.

## Inference and Evaluation

```python
import torch
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

class BartSmall():
    def __init__(self, model_path = 'ar5entum/bart_eng_hin_mt', device = None):
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
        if not device:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.device = device
        self.model.to(device)

    def predict(self, input_text):
        inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
        pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True)
        prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True)
        return prediction
    
    def predict_batch(self, input_texts, batch_size=32):
        all_predictions = []
        for i in range(0, len(input_texts), batch_size):
            batch_texts = input_texts[i:i+batch_size]
            inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512, 
                                    truncation=True, padding=True).to(self.device)
            
            with torch.no_grad():
                pred_ids = self.model.generate(inputs.input_ids, 
                                               max_length=512, 
                                               num_beams=4, 
                                               early_stopping=True)
            
            predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            all_predictions.extend(predictions)

        return all_predictions

model = BartSmall(device='cuda')

input_texts = [
    "This is a repayable amount.",
    "Watch this video to find out.",
    "He was a father of two daughters and a son."
    ]
ground_truths = [
    "यह शोध्य रकम है।", 
    "जानने के लिए देखें ये वीडियो.",
    "वह दो बेटियों व एक बेटे का पिता था।"
    ]
import time
start = time.time()

predictions = model.predict_batch(input_texts, batch_size=len(input_texts))
end = time.time()
print("TIME: ", end-start)
for i in range(len(input_texts)):
    print("‾‾‾‾‾‾‾‾‾‾‾‾")
    print("Input text:\t", input_texts[i])
    print("Prediction:\t", predictions[i])
    print("Ground Truth:\t", ground_truths[i])
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=ground_truths)
print(results)

# TIME:  3.65848970413208
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 This is a repayable amount.
# Prediction:	 यह एक चुकौती राशि है। 
# Ground Truth:	 यह शोध्य रकम है।
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 Watch this video to find out.
# Prediction:	 इस वीडियो को बाहर ढूंढने के लिए इस वीडियो को देख�
# Ground Truth:	 जानने के लिए देखें ये वीडियो.
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 He was a father of two daughters and a son.
# Prediction:	 वह दो बेटियों और एक पुत्र के पिता थे। 
# Ground Truth:	 वह दो बेटियों व एक बेटे का पिता था।
# {'bleu': 0.0, 'precisions': [0.4, 0.13636363636363635, 0.05263157894736842, 0.0], 'brevity_penalty': 1.0, 'length_ratio': 1.25, 'translation_length': 25, 'reference_length': 20}
```
## Training Procedure
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 22
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 88
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1