--- library_name: transformers language: - hi base_model: ar5entum/bart_eng_hin_mt tags: - generated_from_trainer model-index: - name: bart_eng_hin_mt results: [] --- # bart_eng_hin_mt This model is a fine-tuned version of [danasone/bart-small-ru-en](https://huggingface.co/danasone/bart-small-ru-en) on [cfilt/iitb-english-hindi](https://huggingface.co/datasets/cfilt/iitb-english-hindi) dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5147 - eval_model_preparation_time: 0.0051 - eval_bleu: 11.8141 - eval_gen_len: 122.6932 - eval_runtime: 3.6543 - eval_samples_per_second: 142.3 - eval_steps_per_second: 1.642 - step: 0 ## Model description Machine Translation model from English to Hindi on bart small model. ## Inference and Evaluation ```python import torch import evaluate from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class BartSmall(): def __init__(self, model_path = 'ar5entum/bart_eng_hin_mt', device = None): self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path) if not device: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.device = device self.model.to(device) def predict(self, input_text): inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device) pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True) prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True) return prediction def predict_batch(self, input_texts, batch_size=32): all_predictions = [] for i in range(0, len(input_texts), batch_size): batch_texts = input_texts[i:i+batch_size] inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512, truncation=True, padding=True).to(self.device) with torch.no_grad(): pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True) predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True) all_predictions.extend(predictions) return all_predictions model = BartSmall(device='cuda') input_texts = [ "This is a repayable amount.", "Watch this video to find out.", "He was a father of two daughters and a son." ] ground_truths = [ "यह शोध्य रकम है।", "जानने के लिए देखें ये वीडियो.", "वह दो बेटियों व एक बेटे का पिता था।" ] import time start = time.time() predictions = model.predict_batch(input_texts, batch_size=len(input_texts)) end = time.time() print("TIME: ", end-start) for i in range(len(input_texts)): print("‾‾‾‾‾‾‾‾‾‾‾‾") print("Input text:\t", input_texts[i]) print("Prediction:\t", predictions[i]) print("Ground Truth:\t", ground_truths[i]) bleu = evaluate.load("bleu") results = bleu.compute(predictions=predictions, references=ground_truths) print(results) # TIME: 3.65848970413208 # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: This is a repayable amount. # Prediction: यह एक चुकौती राशि है। # Ground Truth: यह शोध्य रकम है। # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: Watch this video to find out. # Prediction: इस वीडियो को बाहर ढूंढने के लिए इस वीडियो को देख� # Ground Truth: जानने के लिए देखें ये वीडियो. # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: He was a father of two daughters and a son. # Prediction: वह दो बेटियों और एक पुत्र के पिता थे। # Ground Truth: वह दो बेटियों व एक बेटे का पिता था। # {'bleu': 0.0, 'precisions': [0.4, 0.13636363636363635, 0.05263157894736842, 0.0], 'brevity_penalty': 1.0, 'length_ratio': 1.25, 'translation_length': 25, 'reference_length': 20} ``` ## Training Procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 22 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 88 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1