Update README.md
Browse files
README.md
CHANGED
@@ -23,17 +23,90 @@ It achieves the following results on the evaluation set:
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
##
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
### Training hyperparameters
|
39 |
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
Machine Translation model from Hindi to English on bart small model.
|
27 |
+
|
28 |
+
## Inference and evaluation
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
import evaluate
|
33 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
34 |
+
|
35 |
+
class BartSmall():
|
36 |
+
def __init__(self, model_path = 'ar5entum/bart_hin_eng_mt', device = None):
|
37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
38 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
39 |
+
if not device:
|
40 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
+
self.device = device
|
42 |
+
self.model.to(device)
|
43 |
+
|
44 |
+
def predict(self, input_text):
|
45 |
+
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
46 |
+
pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True)
|
47 |
+
prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True)
|
48 |
+
return prediction
|
49 |
+
|
50 |
+
def predict_batch(self, input_texts, batch_size=32):
|
51 |
+
all_predictions = []
|
52 |
+
for i in range(0, len(input_texts), batch_size):
|
53 |
+
batch_texts = input_texts[i:i+batch_size]
|
54 |
+
inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512,
|
55 |
+
truncation=True, padding=True).to(self.device)
|
56 |
+
|
57 |
+
with torch.no_grad():
|
58 |
+
pred_ids = self.model.generate(inputs.input_ids,
|
59 |
+
max_length=512,
|
60 |
+
num_beams=4,
|
61 |
+
early_stopping=True)
|
62 |
+
|
63 |
+
predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
64 |
+
all_predictions.extend(predictions)
|
65 |
+
|
66 |
+
return all_predictions
|
67 |
+
|
68 |
+
model = BartSmall(device='cuda')
|
69 |
+
|
70 |
+
input_texts = [
|
71 |
+
"यह शोध्य रकम है।",
|
72 |
+
"जानने के लिए देखें ये वीडियो.",
|
73 |
+
"वह दो बेटियों व एक बेटे का पिता था।"
|
74 |
+
]
|
75 |
+
ground_truths = [
|
76 |
+
"This is a repayable amount.",
|
77 |
+
"Watch this video to find out.",
|
78 |
+
"He was a father of two daughters and a son."
|
79 |
+
]
|
80 |
+
import time
|
81 |
+
start = time.time()
|
82 |
+
|
83 |
+
predictions = model.predict_batch(input_texts, batch_size=len(input_texts))
|
84 |
+
end = time.time()
|
85 |
+
print("TIME: ", end-start)
|
86 |
+
for i in range(len(input_texts)):
|
87 |
+
print("‾‾‾‾‾‾‾‾‾‾‾‾")
|
88 |
+
print("Input text:\t", input_texts[i])
|
89 |
+
print("Prediction:\t", predictions[i])
|
90 |
+
print("Ground Truth:\t", ground_truths[i])
|
91 |
+
bleu = evaluate.load("bleu")
|
92 |
+
results = bleu.compute(predictions=predictions, references=ground_truths)
|
93 |
+
print(results)
|
94 |
+
|
95 |
+
# TIME: 1.2374696731567383
|
96 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
97 |
+
# Input text: यह शोध्य रकम है।
|
98 |
+
# Prediction: This is a repayable amount.
|
99 |
+
# Ground Truth: This is a repayable amount.
|
100 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
101 |
+
# Input text: जानने के लिए देखें ये वीडियो.
|
102 |
+
# Prediction: View these videos to know.
|
103 |
+
# Ground Truth: Watch this video to find out.
|
104 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
105 |
+
# Input text: वह दो बेटियों व एक बेटे का पिता था।
|
106 |
+
# Prediction: He was a father of two daughters and a son.
|
107 |
+
# Ground Truth: He was a father of two daughters and a son.
|
108 |
+
# {'bleu': 0.747875245486914, 'precisions': [0.8260869565217391, 0.75, 0.7647058823529411, 0.7857142857142857], 'brevity_penalty': 0.9574533680683809, 'length_ratio': 0.9583333333333334, 'translation_length': 23, 'reference_length': 24}
|
109 |
+
```
|
110 |
|
111 |
### Training hyperparameters
|
112 |
|