First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- a2c-LunarLander-v2.zip +3 -0
- a2c-LunarLander-v2/_stable_baselines3_version +1 -0
- a2c-LunarLander-v2/data +98 -0
- a2c-LunarLander-v2/policy.optimizer.pth +3 -0
- a2c-LunarLander-v2/policy.pth +3 -0
- a2c-LunarLander-v2/pytorch_variables.pth +3 -0
- a2c-LunarLander-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 111.57 +/- 98.19
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **A2C** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
a2c-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:984738ede1ad846034b6ec5502cb394aaf94fabe60f77b503a99cdeaf3f90fb3
|
3 |
+
size 100908
|
a2c-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a5
|
a2c-LunarLander-v2/data
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d4c786d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d4c786dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d4c786e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d4c786ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9d4c786f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9d4c78e050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d4c78e0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9d4c78e170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d4c78e200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d4c78e290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d4c78e320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9d4c7cfba0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
8
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
40 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False False False False]",
|
42 |
+
"bounded_above": "[False False False False False False False False]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
47 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
48 |
+
"n": 4,
|
49 |
+
"_shape": [],
|
50 |
+
"dtype": "int64",
|
51 |
+
"_np_random": null
|
52 |
+
},
|
53 |
+
"n_envs": 8,
|
54 |
+
"num_timesteps": 500000,
|
55 |
+
"_total_timesteps": 1000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": null,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1651785159.3266068,
|
60 |
+
"learning_rate": {
|
61 |
+
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
63 |
+
},
|
64 |
+
"tensorboard_log": null,
|
65 |
+
"lr_schedule": {
|
66 |
+
":type:": "<class 'function'>",
|
67 |
+
":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
68 |
+
},
|
69 |
+
"_last_obs": {
|
70 |
+
":type:": "<class 'numpy.ndarray'>",
|
71 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGYYizzhuJW6w+GpuyBWkjxxMmQ6IGN+vQAAgD8AAIA/AJHyvHlUuj+vg6a9sxkzvu/VXL6ot4C+AAAAAAAAAADmW809R6lJP7YRqjya2IO9imOCPejjCb4AAAAAAAAAAM1zhT0KDxU/+koPPUzLDr1e61E9wIoevQAAAAAAAAAAAOSOPRq1XD4I9mM7bh1WvaPw0T3WCqU8AAAAAAAAAAAzPWg8nUqtPzmVhj5dIvW+xCC8vECt8r0AAAAAAAAAAGY45bzr/kk/Wyo1ve0Z2r32lIa9uHcyPAAAAAAAAAAAGmZfvehhpz3lrf+8BAIEvjgrO73wEYy9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
|
72 |
+
},
|
73 |
+
"_last_episode_starts": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
76 |
+
},
|
77 |
+
"_last_original_obs": null,
|
78 |
+
"_episode_num": 0,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.50004,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsHEH0UtLsCUhpRSlIwBbJRN6AOMAXSUR0BsVIBzV+ZxdX2UKGgGaAloD0MI3BK54AyHUsCUhpRSlGgVTegDaBZHQGyjVcdHUc51fZQoaAZoCWgPQwj0FaQZi89bwJSGlFKUaBVN6ANoFkdAbOHQSi/O+3V9lChoBmgJaA9DCOIi93R1C0vAlIaUUpRoFU3oA2gWR0Bs92mNzbN9dX2UKGgGaAloD0MI2Lj+XZ9oVMCUhpRSlGgVTegDaBZHQG0M/I0ZWJd1fZQoaAZoCWgPQwgPYJFfP+BLwJSGlFKUaBVN6ANoFkdAbRSY0l7dBXV9lChoBmgJaA9DCLka2ZWW4RPAlIaUUpRoFU3oA2gWR0BtIpeXzDoAdX2UKGgGaAloD0MIIT1FDhGjS8CUhpRSlGgVTegDaBZHQG1GYxtYSxt1fZQoaAZoCWgPQwigTnl0IyxXwJSGlFKUaBVN6ANoFkdAbUm2fkFOf3V9lChoBmgJaA9DCElm9Q63ymhAlIaUUpRoFU3aAWgWR0BtXTXpW3jNdX2UKGgGaAloD0MI+uyA6wotZkCUhpRSlGgVTU8DaBZHQG1rMsxwhnt1fZQoaAZoCWgPQwicb0T3rKVSwJSGlFKUaBVN6ANoFkdAbbiGcnVoYnV9lChoBmgJaA9DCNW0i2mmBzrAlIaUUpRoFU3oA2gWR0Bt2xI1+AmRdX2UKGgGaAloD0MIPDJWm/88U8CUhpRSlGgVTegDaBZHQG3ilkH2RJV1fZQoaAZoCWgPQwjyYfay7UBMwJSGlFKUaBVN6ANoFkdAbe/Gus90R3V9lChoBmgJaA9DCH0fDhKitk/AlIaUUpRoFU3oA2gWR0BuDbO/tY0VdX2UKGgGaAloD0MIQPm7d9SvWcCUhpRSlGgVTegDaBZHQG4Qn1nM+vB1fZQoaAZoCWgPQwgSoKaWrRUYQJSGlFKUaBVN6ANoFkdAbieF/x2B8XV9lChoBmgJaA9DCMPVARB3A1jAlIaUUpRoFU3oA2gWR0BuN0l9jPOZdX2UKGgGaAloD0MIK061Fma9cECUhpRSlGgVTQgCaBZHQG5GbzTWoWJ1fZQoaAZoCWgPQwjUt8zpMpNkQJSGlFKUaBVNNQNoFkdAbmJdPci4a3V9lChoBmgJaA9DCF9BmrFoXG1AlIaUUpRoFU3IAWgWR0Buj71EmY0EdX2UKGgGaAloD0MIk6espmutYkCUhpRSlGgVTQYDaBZHQG6Vj4593KV1fZQoaAZoCWgPQwjqswOuK+pRwJSGlFKUaBVN6ANoFkdAbrV5eqrBCXV9lChoBmgJaA9DCLLWUGovlE/AlIaUUpRoFUu4aBZHQG7i6HKwIMV1fZQoaAZoCWgPQwjwhjQqcCozwJSGlFKUaBVN6ANoFkdAbvqOy3Td+HV9lChoBmgJaA9DCIGWrmAbhTrAlIaUUpRoFU3oA2gWR0Bu/gyO7xusdX2UKGgGaAloD0MIYK3aNaHfZMCUhpRSlGgVS9toFkdAbxa3YL9deXV9lChoBmgJaA9DCCjU00fgM0XAlIaUUpRoFU3oA2gWR0BvJxEroW56dX2UKGgGaAloD0MIoWr0aoDUVMCUhpRSlGgVTegDaBZHQG82Y8lolD51fZQoaAZoCWgPQwhJSQ9Dq5tNwJSGlFKUaBVN6ANoFkdAb0+hf0Eov3V9lChoBmgJaA9DCJvJN9vcR2NAlIaUUpRoFU20A2gWR0BvarRtxdY5dX2UKGgGaAloD0MIO1W+Z6RsYMCUhpRSlGgVTegDaBZHQG95Ul7dBSl1fZQoaAZoCWgPQwh/Z3v0hvc/QJSGlFKUaBVL3mgWR0BvfTyYoiLVdX2UKGgGaAloD0MIryKjAxKmakCUhpRSlGgVTe8BaBZHQG99tPpIMBp1fZQoaAZoCWgPQwgfatswitZpQJSGlFKUaBVNbwJoFkdAb36FqSHM2XV9lChoBmgJaA9DCP2hmSfXGD3AlIaUUpRoFUunaBZHQG+XEDhcZ+B1fZQoaAZoCWgPQwhJRzmYTVpQwJSGlFKUaBVN6ANoFkdAb8FH6uW8iHV9lChoBmgJaA9DCCtM32uIm3FAlIaUUpRoFU1dAWgWR0Bv4brE9+w1dX2UKGgGaAloD0MIg9xFmKKcUsCUhpRSlGgVTegDaBZHQG/x47JW/8F1fZQoaAZoCWgPQwgJF/IIbnxoQJSGlFKUaBVNpwJoFkdAb/JbnoxHoXV9lChoBmgJaA9DCMXIkjmWV1PAlIaUUpRoFU3oA2gWR0BwAMF1SwW4dX2UKGgGaAloD0MIpz0l58SiNsCUhpRSlGgVTegDaBZHQHApDBdld1N1fZQoaAZoCWgPQwgIlE25wnFPwJSGlFKUaBVN6ANoFkdAcCvzLwF1S3V9lChoBmgJaA9DCA9iZwqdD0TAlIaUUpRoFU3oA2gWR0BwLHhybQTmdX2UKGgGaAloD0MImE9WDFcfSECUhpRSlGgVS7toFkdAcDrzVc2R73V9lChoBmgJaA9DCH3NctnofBlAlIaUUpRoFU1FAWgWR0BwTxs2vStvdX2UKGgGaAloD0MIzLipgearUcCUhpRSlGgVTegDaBZHQHBUBD5TIeZ1fZQoaAZoCWgPQwiaIyu/DFYpQJSGlFKUaBVL1mgWR0BwVUIVuaWpdX2UKGgGaAloD0MIJZaUu8+nRcCUhpRSlGgVTegDaBZHQHBnG4uscQ11fZQoaAZoCWgPQwhqMuNtpX8jwJSGlFKUaBVN6ANoFkdAcG9zI3irDXV9lChoBmgJaA9DCPwBDwwgPP6/lIaUUpRoFU3oA2gWR0Bwb6G34Kx+dX2UKGgGaAloD0MI/l915EhBb0CUhpRSlGgVTYQCaBZHQHBzJSzgMtt1fZQoaAZoCWgPQwg0vi8uVWnpP5SGlFKUaBVN6ANoFkdAcHPO3DvVmXV9lChoBmgJaA9DCPc+VYUG+jVAlIaUUpRoFUviaBZHQHB9cpgCwKV1fZQoaAZoCWgPQwgT0hqDTsJvQJSGlFKUaBVNQwFoFkdAcI1rwe/5+HV9lChoBmgJaA9DCGwGuCBb+WZAlIaUUpRoFU3YAmgWR0BwupfG+9J0dX2UKGgGaAloD0MIG4ANiBAvJ8CUhpRSlGgVTegDaBZHQHC93rMTviN1fZQoaAZoCWgPQwgmUprN42JGwJSGlFKUaBVN6ANoFkdAcMJfQrtmc3V9lChoBmgJaA9DCDBl4ICWkmNAlIaUUpRoFU3oA2gWR0Bww2H0se4kdX2UKGgGaAloD0MIzJpY4Ot8cECUhpRSlGgVTccBaBZHQHDIYYR/ViF1fZQoaAZoCWgPQwgxB0FHqxVWwJSGlFKUaBVN6ANoFkdAcM+d+5OJtXV9lChoBmgJaA9DCFwgQfFjcV/AlIaUUpRoFU3oA2gWR0Bw2j9m6GxmdX2UKGgGaAloD0MIstgmFY0nS8CUhpRSlGgVTegDaBZHQHDrbRjSXt11fZQoaAZoCWgPQwjaklURbpFuQJSGlFKUaBVNqAFoFkdAcRB5ZKWcBnV9lChoBmgJaA9DCCLfpdQlY29AlIaUUpRoFU1BAWgWR0BxGy2b5M11dX2UKGgGaAloD0MImfViKCcwTcCUhpRSlGgVTegDaBZHQHE/SGWUr091fZQoaAZoCWgPQwjUgEHSp8pWwJSGlFKUaBVN6ANoFkdAcUOthNM4+HV9lChoBmgJaA9DCPLtXYO+FDhAlIaUUpRoFUvjaBZHQHFHtUsFt9B1fZQoaAZoCWgPQwihaB7AIuhUwJSGlFKUaBVN6ANoFkdAcUmLgn+hoXV9lChoBmgJaA9DCKc7TzxngzHAlIaUUpRoFU3oA2gWR0BxSsaDPGADdX2UKGgGaAloD0MI2ZjXEYdGUsCUhpRSlGgVTegDaBZHQHFQhC+lCTl1fZQoaAZoCWgPQwi4kEdwIwk3QJSGlFKUaBVLqGgWR0BxVUkSmIj4dX2UKGgGaAloD0MI9OFZgkzzcECUhpRSlGgVTbwBaBZHQHFWXp0OmSB1fZQoaAZoCWgPQwgZNzXQfJdWwJSGlFKUaBVN6ANoFkdAcVaCZ4Oc2HV9lChoBmgJaA9DCBuBeF0/X2HAlIaUUpRoFUuYaBZHQHFWtIbwSap1fZQoaAZoCWgPQwiKq8q+KyIhQJSGlFKUaBVL2mgWR0BxVvWkJrtWdX2UKGgGaAloD0MIxjGSPUIhSkCUhpRSlGgVS65oFkdAcVezDXOGCnV9lChoBmgJaA9DCFRSJ6CJSlJAlIaUUpRoFUvZaBZHQHFbOmrKeTV1fZQoaAZoCWgPQwg0+PvFbKVDQJSGlFKUaBVL2GgWR0BxX0TIvJzUdX2UKGgGaAloD0MIsqGb/YH2Q0CUhpRSlGgVS6xoFkdAcWwN34bjtHV9lChoBmgJaA9DCOWAXU2ecmhAlIaUUpRoFU2LAWgWR0BxbBW2gFotdX2UKGgGaAloD0MIesISDyjPMECUhpRSlGgVS8xoFkdAcYIlRP420nV9lChoBmgJaA9DCGbZk8Dm6FHAlIaUUpRoFU1WAmgWR0Bxg9P+GXXzdX2UKGgGaAloD0MIQ/6ZQXzqYMCUhpRSlGgVS5ZoFkdAcZW2606YFHV9lChoBmgJaA9DCFZkdECSx2ZAlIaUUpRoFU0IA2gWR0Bxn54Y77sOdX2UKGgGaAloD0MIRG/x8J5POMCUhpRSlGgVTegDaBZHQHGjXzH0btJ1fZQoaAZoCWgPQwhiuhCrP+BLwJSGlFKUaBVN6ANoFkdAcbYxuKoAGXV9lChoBmgJaA9DCKJBCp5CxWhAlIaUUpRoFU1QAmgWR0BxtlYjjaPCdX2UKGgGaAloD0MIDD1i9NzCHcCUhpRSlGgVTegDaBZHQHG3wmZ3LV51fZQoaAZoCWgPQwjrHW6HBg5wQJSGlFKUaBVNDwFoFkdAcbkPOIInjXV9lChoBmgJaA9DCNkJL8EpV2BAlIaUUpRoFU3MA2gWR0Bxv+eg+QlsdX2UKGgGaAloD0MIzJvDtdoDSECUhpRSlGgVS6hoFkdAccK8ma6ST3V9lChoBmgJaA9DCNeEtMaglzFAlIaUUpRoFUufaBZHQHHDMRUWEbp1fZQoaAZoCWgPQwgOSS2UzL1mQJSGlFKUaBVNjQJoFkdAccrdKujh1nV9lChoBmgJaA9DCFVQUfUrPRVAlIaUUpRoFUvMaBZHQHHONALRa5h1fZQoaAZoCWgPQwjy0eKMYUo9QJSGlFKUaBVLpGgWR0BxzoQlKK51dX2UKGgGaAloD0MIgGH5821XTECUhpRSlGgVS6JoFkdAcdcT8YQ8OnV9lChoBmgJaA9DCBu9GqA0TDdAlIaUUpRoFUuJaBZHQHHk4oNNJvp1fZQoaAZoCWgPQwiC4VzDjERjQJSGlFKUaBVN/wJoFkdAcebwC8vmHXVlLg=="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 12499,
|
91 |
+
"n_steps": 5,
|
92 |
+
"gamma": 0.995,
|
93 |
+
"gae_lambda": 1.0,
|
94 |
+
"ent_coef": 1e-05,
|
95 |
+
"vf_coef": 0.5,
|
96 |
+
"max_grad_norm": 0.5,
|
97 |
+
"normalize_advantage": false
|
98 |
+
}
|
a2c-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1f35405987853ea4cecf934ade9c3623c622434fff443bebbfaea406c9cb899
|
3 |
+
size 42433
|
a2c-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be39b0da7e2dcf85933d89e9f0aa4ffc2e0d208cf0a2d7f9675d9c93be2c0052
|
3 |
+
size 43073
|
a2c-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a5
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d4c786d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d4c786dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d4c786e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d4c786ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f9d4c786f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d4c78e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d4c78e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d4c78e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d4c78e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d4c78e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d4c78e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d4c7cfba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 500000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651785159.3266068, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGYYizzhuJW6w+GpuyBWkjxxMmQ6IGN+vQAAgD8AAIA/AJHyvHlUuj+vg6a9sxkzvu/VXL6ot4C+AAAAAAAAAADmW809R6lJP7YRqjya2IO9imOCPejjCb4AAAAAAAAAAM1zhT0KDxU/+koPPUzLDr1e61E9wIoevQAAAAAAAAAAAOSOPRq1XD4I9mM7bh1WvaPw0T3WCqU8AAAAAAAAAAAzPWg8nUqtPzmVhj5dIvW+xCC8vECt8r0AAAAAAAAAAGY45bzr/kk/Wyo1ve0Z2r32lIa9uHcyPAAAAAAAAAAAGmZfvehhpz3lrf+8BAIEvjgrO73wEYy9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.50004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsHEH0UtLsCUhpRSlIwBbJRN6AOMAXSUR0BsVIBzV+ZxdX2UKGgGaAloD0MI3BK54AyHUsCUhpRSlGgVTegDaBZHQGyjVcdHUc51fZQoaAZoCWgPQwj0FaQZi89bwJSGlFKUaBVN6ANoFkdAbOHQSi/O+3V9lChoBmgJaA9DCOIi93R1C0vAlIaUUpRoFU3oA2gWR0Bs92mNzbN9dX2UKGgGaAloD0MI2Lj+XZ9oVMCUhpRSlGgVTegDaBZHQG0M/I0ZWJd1fZQoaAZoCWgPQwgPYJFfP+BLwJSGlFKUaBVN6ANoFkdAbRSY0l7dBXV9lChoBmgJaA9DCLka2ZWW4RPAlIaUUpRoFU3oA2gWR0BtIpeXzDoAdX2UKGgGaAloD0MIIT1FDhGjS8CUhpRSlGgVTegDaBZHQG1GYxtYSxt1fZQoaAZoCWgPQwigTnl0IyxXwJSGlFKUaBVN6ANoFkdAbUm2fkFOf3V9lChoBmgJaA9DCElm9Q63ymhAlIaUUpRoFU3aAWgWR0BtXTXpW3jNdX2UKGgGaAloD0MI+uyA6wotZkCUhpRSlGgVTU8DaBZHQG1rMsxwhnt1fZQoaAZoCWgPQwicb0T3rKVSwJSGlFKUaBVN6ANoFkdAbbiGcnVoYnV9lChoBmgJaA9DCNW0i2mmBzrAlIaUUpRoFU3oA2gWR0Bt2xI1+AmRdX2UKGgGaAloD0MIPDJWm/88U8CUhpRSlGgVTegDaBZHQG3ilkH2RJV1fZQoaAZoCWgPQwjyYfay7UBMwJSGlFKUaBVN6ANoFkdAbe/Gus90R3V9lChoBmgJaA9DCH0fDhKitk/AlIaUUpRoFU3oA2gWR0BuDbO/tY0VdX2UKGgGaAloD0MIQPm7d9SvWcCUhpRSlGgVTegDaBZHQG4Qn1nM+vB1fZQoaAZoCWgPQwgSoKaWrRUYQJSGlFKUaBVN6ANoFkdAbieF/x2B8XV9lChoBmgJaA9DCMPVARB3A1jAlIaUUpRoFU3oA2gWR0BuN0l9jPOZdX2UKGgGaAloD0MIK061Fma9cECUhpRSlGgVTQgCaBZHQG5GbzTWoWJ1fZQoaAZoCWgPQwjUt8zpMpNkQJSGlFKUaBVNNQNoFkdAbmJdPci4a3V9lChoBmgJaA9DCF9BmrFoXG1AlIaUUpRoFU3IAWgWR0Buj71EmY0EdX2UKGgGaAloD0MIk6espmutYkCUhpRSlGgVTQYDaBZHQG6Vj4593KV1fZQoaAZoCWgPQwjqswOuK+pRwJSGlFKUaBVN6ANoFkdAbrV5eqrBCXV9lChoBmgJaA9DCLLWUGovlE/AlIaUUpRoFUu4aBZHQG7i6HKwIMV1fZQoaAZoCWgPQwjwhjQqcCozwJSGlFKUaBVN6ANoFkdAbvqOy3Td+HV9lChoBmgJaA9DCIGWrmAbhTrAlIaUUpRoFU3oA2gWR0Bu/gyO7xusdX2UKGgGaAloD0MIYK3aNaHfZMCUhpRSlGgVS9toFkdAbxa3YL9deXV9lChoBmgJaA9DCCjU00fgM0XAlIaUUpRoFU3oA2gWR0BvJxEroW56dX2UKGgGaAloD0MIoWr0aoDUVMCUhpRSlGgVTegDaBZHQG82Y8lolD51fZQoaAZoCWgPQwhJSQ9Dq5tNwJSGlFKUaBVN6ANoFkdAb0+hf0Eov3V9lChoBmgJaA9DCJvJN9vcR2NAlIaUUpRoFU20A2gWR0BvarRtxdY5dX2UKGgGaAloD0MIO1W+Z6RsYMCUhpRSlGgVTegDaBZHQG95Ul7dBSl1fZQoaAZoCWgPQwh/Z3v0hvc/QJSGlFKUaBVL3mgWR0BvfTyYoiLVdX2UKGgGaAloD0MIryKjAxKmakCUhpRSlGgVTe8BaBZHQG99tPpIMBp1fZQoaAZoCWgPQwgfatswitZpQJSGlFKUaBVNbwJoFkdAb36FqSHM2XV9lChoBmgJaA9DCP2hmSfXGD3AlIaUUpRoFUunaBZHQG+XEDhcZ+B1fZQoaAZoCWgPQwhJRzmYTVpQwJSGlFKUaBVN6ANoFkdAb8FH6uW8iHV9lChoBmgJaA9DCCtM32uIm3FAlIaUUpRoFU1dAWgWR0Bv4brE9+w1dX2UKGgGaAloD0MIg9xFmKKcUsCUhpRSlGgVTegDaBZHQG/x47JW/8F1fZQoaAZoCWgPQwgJF/IIbnxoQJSGlFKUaBVNpwJoFkdAb/JbnoxHoXV9lChoBmgJaA9DCMXIkjmWV1PAlIaUUpRoFU3oA2gWR0BwAMF1SwW4dX2UKGgGaAloD0MIpz0l58SiNsCUhpRSlGgVTegDaBZHQHApDBdld1N1fZQoaAZoCWgPQwgIlE25wnFPwJSGlFKUaBVN6ANoFkdAcCvzLwF1S3V9lChoBmgJaA9DCA9iZwqdD0TAlIaUUpRoFU3oA2gWR0BwLHhybQTmdX2UKGgGaAloD0MImE9WDFcfSECUhpRSlGgVS7toFkdAcDrzVc2R73V9lChoBmgJaA9DCH3NctnofBlAlIaUUpRoFU1FAWgWR0BwTxs2vStvdX2UKGgGaAloD0MIzLipgearUcCUhpRSlGgVTegDaBZHQHBUBD5TIeZ1fZQoaAZoCWgPQwiaIyu/DFYpQJSGlFKUaBVL1mgWR0BwVUIVuaWpdX2UKGgGaAloD0MIJZaUu8+nRcCUhpRSlGgVTegDaBZHQHBnG4uscQ11fZQoaAZoCWgPQwhqMuNtpX8jwJSGlFKUaBVN6ANoFkdAcG9zI3irDXV9lChoBmgJaA9DCPwBDwwgPP6/lIaUUpRoFU3oA2gWR0Bwb6G34Kx+dX2UKGgGaAloD0MI/l915EhBb0CUhpRSlGgVTYQCaBZHQHBzJSzgMtt1fZQoaAZoCWgPQwg0vi8uVWnpP5SGlFKUaBVN6ANoFkdAcHPO3DvVmXV9lChoBmgJaA9DCPc+VYUG+jVAlIaUUpRoFUviaBZHQHB9cpgCwKV1fZQoaAZoCWgPQwgT0hqDTsJvQJSGlFKUaBVNQwFoFkdAcI1rwe/5+HV9lChoBmgJaA9DCGwGuCBb+WZAlIaUUpRoFU3YAmgWR0BwupfG+9J0dX2UKGgGaAloD0MIG4ANiBAvJ8CUhpRSlGgVTegDaBZHQHC93rMTviN1fZQoaAZoCWgPQwgmUprN42JGwJSGlFKUaBVN6ANoFkdAcMJfQrtmc3V9lChoBmgJaA9DCDBl4ICWkmNAlIaUUpRoFU3oA2gWR0Bww2H0se4kdX2UKGgGaAloD0MIzJpY4Ot8cECUhpRSlGgVTccBaBZHQHDIYYR/ViF1fZQoaAZoCWgPQwgxB0FHqxVWwJSGlFKUaBVN6ANoFkdAcM+d+5OJtXV9lChoBmgJaA9DCFwgQfFjcV/AlIaUUpRoFU3oA2gWR0Bw2j9m6GxmdX2UKGgGaAloD0MIstgmFY0nS8CUhpRSlGgVTegDaBZHQHDrbRjSXt11fZQoaAZoCWgPQwjaklURbpFuQJSGlFKUaBVNqAFoFkdAcRB5ZKWcBnV9lChoBmgJaA9DCCLfpdQlY29AlIaUUpRoFU1BAWgWR0BxGy2b5M11dX2UKGgGaAloD0MImfViKCcwTcCUhpRSlGgVTegDaBZHQHE/SGWUr091fZQoaAZoCWgPQwjUgEHSp8pWwJSGlFKUaBVN6ANoFkdAcUOthNM4+HV9lChoBmgJaA9DCPLtXYO+FDhAlIaUUpRoFUvjaBZHQHFHtUsFt9B1fZQoaAZoCWgPQwihaB7AIuhUwJSGlFKUaBVN6ANoFkdAcUmLgn+hoXV9lChoBmgJaA9DCKc7TzxngzHAlIaUUpRoFU3oA2gWR0BxSsaDPGADdX2UKGgGaAloD0MI2ZjXEYdGUsCUhpRSlGgVTegDaBZHQHFQhC+lCTl1fZQoaAZoCWgPQwi4kEdwIwk3QJSGlFKUaBVLqGgWR0BxVUkSmIj4dX2UKGgGaAloD0MI9OFZgkzzcECUhpRSlGgVTbwBaBZHQHFWXp0OmSB1fZQoaAZoCWgPQwgZNzXQfJdWwJSGlFKUaBVN6ANoFkdAcVaCZ4Oc2HV9lChoBmgJaA9DCBuBeF0/X2HAlIaUUpRoFUuYaBZHQHFWtIbwSap1fZQoaAZoCWgPQwiKq8q+KyIhQJSGlFKUaBVL2mgWR0BxVvWkJrtWdX2UKGgGaAloD0MIxjGSPUIhSkCUhpRSlGgVS65oFkdAcVezDXOGCnV9lChoBmgJaA9DCFRSJ6CJSlJAlIaUUpRoFUvZaBZHQHFbOmrKeTV1fZQoaAZoCWgPQwg0+PvFbKVDQJSGlFKUaBVL2GgWR0BxX0TIvJzUdX2UKGgGaAloD0MIsqGb/YH2Q0CUhpRSlGgVS6xoFkdAcWwN34bjtHV9lChoBmgJaA9DCOWAXU2ecmhAlIaUUpRoFU2LAWgWR0BxbBW2gFotdX2UKGgGaAloD0MIesISDyjPMECUhpRSlGgVS8xoFkdAcYIlRP420nV9lChoBmgJaA9DCGbZk8Dm6FHAlIaUUpRoFU1WAmgWR0Bxg9P+GXXzdX2UKGgGaAloD0MIQ/6ZQXzqYMCUhpRSlGgVS5ZoFkdAcZW2606YFHV9lChoBmgJaA9DCFZkdECSx2ZAlIaUUpRoFU0IA2gWR0Bxn54Y77sOdX2UKGgGaAloD0MIRG/x8J5POMCUhpRSlGgVTegDaBZHQHGjXzH0btJ1fZQoaAZoCWgPQwhiuhCrP+BLwJSGlFKUaBVN6ANoFkdAcbYxuKoAGXV9lChoBmgJaA9DCKJBCp5CxWhAlIaUUpRoFU1QAmgWR0BxtlYjjaPCdX2UKGgGaAloD0MIDD1i9NzCHcCUhpRSlGgVTegDaBZHQHG3wmZ3LV51fZQoaAZoCWgPQwjrHW6HBg5wQJSGlFKUaBVNDwFoFkdAcbkPOIInjXV9lChoBmgJaA9DCNkJL8EpV2BAlIaUUpRoFU3MA2gWR0Bxv+eg+QlsdX2UKGgGaAloD0MIzJvDtdoDSECUhpRSlGgVS6hoFkdAccK8ma6ST3V9lChoBmgJaA9DCNeEtMaglzFAlIaUUpRoFUufaBZHQHHDMRUWEbp1fZQoaAZoCWgPQwgOSS2UzL1mQJSGlFKUaBVNjQJoFkdAccrdKujh1nV9lChoBmgJaA9DCFVQUfUrPRVAlIaUUpRoFUvMaBZHQHHONALRa5h1fZQoaAZoCWgPQwjy0eKMYUo9QJSGlFKUaBVLpGgWR0BxzoQlKK51dX2UKGgGaAloD0MIgGH5821XTECUhpRSlGgVS6JoFkdAcdcT8YQ8OnV9lChoBmgJaA9DCBu9GqA0TDdAlIaUUpRoFUuJaBZHQHHk4oNNJvp1fZQoaAZoCWgPQwiC4VzDjERjQJSGlFKUaBVN/wJoFkdAcebwC8vmHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12499, "n_steps": 5, "gamma": 0.995, "gae_lambda": 1.0, "ent_coef": 1e-05, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.7.10", "Stable-Baselines3": "1.5.1a5", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd988443f362d6de127be0e085d050653aa437dcfdd65739a07dc785b7f2c8a
|
3 |
+
size 258636
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 111.57129189999998, "std_reward": 98.18886065587273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T23:20:36.963723"}
|