Initial commit
Browse files- .gitattributes +1 -0
- README.md +82 -0
- args.yml +81 -0
- config.yml +23 -0
- env_kwargs.yml +1 -0
- ppo-CartPole-v1.zip +3 -0
- ppo-CartPole-v1/_stable_baselines3_version +1 -0
- ppo-CartPole-v1/data +99 -0
- ppo-CartPole-v1/policy.optimizer.pth +3 -0
- ppo-CartPole-v1/policy.pth +3 -0
- ppo-CartPole-v1/pytorch_variables.pth +3 -0
- ppo-CartPole-v1/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga araffin -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga araffin -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env CartPole-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga araffin
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('clip_range', 'lin_0.2'),
|
67 |
+
('ent_coef', 0.0),
|
68 |
+
('gae_lambda', 0.8),
|
69 |
+
('gamma', 0.98),
|
70 |
+
('learning_rate', 'lin_0.001'),
|
71 |
+
('n_envs', 8),
|
72 |
+
('n_epochs', 20),
|
73 |
+
('n_steps', 32),
|
74 |
+
('n_timesteps', 100000.0),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('normalize', False)])
|
77 |
+
```
|
78 |
+
|
79 |
+
# Environment Arguments
|
80 |
+
```python
|
81 |
+
{'render_mode': 'rgb_array'}
|
82 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- CartPole-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- true
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 532292511
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 0
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - clip_range
|
5 |
+
- lin_0.2
|
6 |
+
- - ent_coef
|
7 |
+
- 0.0
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.8
|
10 |
+
- - gamma
|
11 |
+
- 0.98
|
12 |
+
- - learning_rate
|
13 |
+
- lin_0.001
|
14 |
+
- - n_envs
|
15 |
+
- 8
|
16 |
+
- - n_epochs
|
17 |
+
- 20
|
18 |
+
- - n_steps
|
19 |
+
- 32
|
20 |
+
- - n_timesteps
|
21 |
+
- 100000.0
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
ppo-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c55054d908ec2592d008671ee5dba834ecf4e0cd95ab9daf590b116710b6d8
|
3 |
+
size 139276
|
ppo-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
ppo-CartPole-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb21ab22c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb21ab22cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb21ab22d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb21ab22dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb21ab22e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb21ab22ef0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb21ab22f80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb21ab23010>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb21ab230a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb21ab23130>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb21ab231c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb21ab23250>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb21ab14c00>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 52736,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 0,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692303699326410655,
|
30 |
+
"learning_rate": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": null,
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.47263999999999995,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+AAAAAAACMAWyUS36MAXSUR0AO5KDkELYxdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0AO7p5eJHiFdX2UKGgGR0BgQAAAAAAAaAdLgmgIR0AP8Djin5zpdX2UKGgGR0BhwAAAAAAAaAdLjmgIR0AQP+98JD3NdX2UKGgGR0Bi4AAAAAAAaAdLl2gIR0AQRUhmoR7JdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0AQjPdEb5uZdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0AQhzDGcWj5dX2UKGgGR0BiAAAAAAAAaAdLkGgIR0AQkb2lEZzgdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0AQzOE/SpirdX2UKGgGR0BmoAAAAAAAaAdLtWgIR0ARD+glF+d9dX2UKGgGR0BhIAAAAAAAaAdLiWgIR0ARE8ZDRc/udX2UKGgGR0BlwAAAAAAAaAdLrmgIR0ARpBeHBUJfdX2UKGgGR0BkgAAAAAAAaAdLpGgIR0ARooPTXrdFdX2UKGgGR0BpgAAAAAAAaAdLzGgIR0ASatozvZyudX2UKGgGR0BsIAAAAAAAaAdL4WgIR0ASdHlOoHcDdX2UKGgGR0BogAAAAAAAaAdLxGgIR0ASsT/Q0GeMdX2UKGgGR0BvwAAAAAAAaAdL/mgIR0AS8zrNW2gGdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0ATNgOSW7e3dX2UKGgGR0BoAAAAAAAAaAdLwGgIR0ATQ5uIhyKfdX2UKGgGR0B00AAAAAAAaAdNTQFoCEdAE0VCXyAhCHV9lChoBkdAYuAAAAAAAGgHS5doCEdAFAmig00m+nV9lChoBkdAaoAAAAAAAGgHS9RoCEdAFBfjS5RTCXV9lChoBkdAbGAAAAAAAGgHS+NoCEdAFF3ocJdB0XV9lChoBkdAecAAAAAAAGgHTZwBaAhHQBSWRzRx95R1fZQoaAZHQGTAAAAAAABoB0umaAhHQBSUg0TDfm91fZQoaAZHQGMgAAAAAABoB0uZaAhHQBSat1ZDArR1fZQoaAZHQGrgAAAAAABoB0vXaAhHQBTX8n/kvK51fZQoaAZHQGeAAAAAAABoB0u8aAhHQBTlCLMs6JZ1fZQoaAZHQG1gAAAAAABoB0vraAhHQBXzneSB9Th1fZQoaAZHQGXAAAAAAABoB0uuaAhHQBX5DArQPZt1fZQoaAZHQGugAAAAAABoB0vdaAhHQBX6/7BO58V1fZQoaAZHQGYgAAAAAABoB0uxaAhHQBYAhbGFSKp1fZQoaAZHQGpgAAAAAABoB0vTaAhHQBY5R8+iaiN1fZQoaAZHQGVgAAAAAABoB0uraAhHQBY2hRIjGDN1fZQoaAZHQGlgAAAAAABoB0vLaAhHQBY6K1og3cZ1fZQoaAZHQGdAAAAAAABoB0u6aAhHQBaBPCVKPGR1fZQoaAZHQGqAAAAAAABoB0vUaAhHQBfYO+ZgG8p1fZQoaAZHQG3gAAAAAABoB0vvaAhHQBhcHnlnyup1fZQoaAZHQHGQAAAAAABoB00ZAWgIR0AYYF1SwW30dX2UKGgGR0BvAAAAAAAAaAdL+GgIR0AYXgZTAFgVdX2UKGgGR0BqoAAAAAAAaAdL1WgIR0AYYC1Z1V5sdX2UKGgGR0BxkAAAAAAAaAdNGQFoCEdAGGvStvGZNXV9lChoBkdAcUAAAAAAAGgHTRQBaAhHQBhwiaAnUlR1fZQoaAZHQHTgAAAAAABoB01OAWgIR0AY6n5zo2XLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAH47v5P/JeXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQB/hmoR7JGR1fZQoaAZHQH9AAAAAAABoB030AWgIR0Af5cIJJGvwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAH+NiYsunM3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQB/ls+FDfFd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AgE1eBxxT9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIBYNqgyuZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCA5HPNVzZJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ah2o99tuUEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIh1PWQOnVHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCIfYJ3PiUB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AiHjT8YQ8PdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIh9/8VHnU3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCIlWCEpRXR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AiQYb83uNQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAImU6o2n89HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCQG0G/vfCR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AkLv3JxNqQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJEqxLTQVsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCRJhttQ9A51fZQoaAZHQH9AAAAAAABoB030AWgIR0AkSrnTy8SPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJFCe/Yao/HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCRTFS88La51fZQoaAZHQH9AAAAAAABoB030AWgIR0Akd0K7ZnL8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJhc0UGmk33V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCZYe7tiQT51fZQoaAZHQH9AAAAAAABoB030AWgIR0AmWohpxm03dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJllY+0PYnXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCZadBjWkJt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ameq+ajN6gdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJn0zTF2mpHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCagYxcmjTN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoN82Jiy6ddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKHmuTzND+nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCh7vd/J/5N1fZQoaAZHQH9AAAAAAABoB030AWgIR0Aoeo60Y0l7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKHu1WsA/93V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCiBqTKT0QN1fZQoaAZHQH9AAAAAAABoB030AWgIR0Aonzq8lHBldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKMLUb1h9cHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpeaUiY9gZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqhbQkX1rZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKoe6y0KJEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqGiaiKziV1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqoO9WZJCjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKqbah6By0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqpU70WdmR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqzS/j81n/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALgRx1gYxcnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5Hd0q6OHZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuSYoAn2IwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALkhaC+UQkHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5Jguyu6mR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuaLtu1ndwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALmtZNfw7T3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC6OFi8WbgF1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4112,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True]",
|
60 |
+
"bounded_above": "[ True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
65 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
66 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
67 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
73 |
+
"n": "2",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 32,
|
81 |
+
"gamma": 0.98,
|
82 |
+
"gae_lambda": 0.8,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 20,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b3231e1395daacc5e73510e7867cc8bfe387d40025594c723cf66823d29cfeb
|
3 |
+
size 82425
|
ppo-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee6c15ac92fac7483a369f550957bc05131ecab99349fb9e0eb2238d08f79d72
|
3 |
+
size 40641
|
ppo-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 # 85-Ubuntu SMP Fri Jul 7 15:25:09 UTC 2023
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0.dev20230420+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.0
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3733450166b03e25ae26f120e8aa709612db5937afa388963f9361885322aac
|
3 |
+
size 53956
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T22:24:02.976798"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:436d7609cce400aba604a73323364ac7af347b23648ccfb40837411b5d557844
|
3 |
+
size 7665
|