araffin commited on
Commit
48dd7c8
·
verified ·
1 Parent(s): 387f9b2

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **CartPole-v1**
25
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga araffin -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga araffin -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env CartPole-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga araffin
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('clip_range', 'lin_0.2'),
67
+ ('ent_coef', 0.0),
68
+ ('gae_lambda', 0.8),
69
+ ('gamma', 0.98),
70
+ ('learning_rate', 'lin_0.001'),
71
+ ('n_envs', 8),
72
+ ('n_epochs', 20),
73
+ ('n_steps', 32),
74
+ ('n_timesteps', 100000.0),
75
+ ('policy', 'MlpPolicy'),
76
+ ('normalize', False)])
77
+ ```
78
+
79
+ # Environment Arguments
80
+ ```python
81
+ {'render_mode': 'rgb_array'}
82
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - CartPole-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - true
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 532292511
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 0
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - lin_0.2
6
+ - - ent_coef
7
+ - 0.0
8
+ - - gae_lambda
9
+ - 0.8
10
+ - - gamma
11
+ - 0.98
12
+ - - learning_rate
13
+ - lin_0.001
14
+ - - n_envs
15
+ - 8
16
+ - - n_epochs
17
+ - 20
18
+ - - n_steps
19
+ - 32
20
+ - - n_timesteps
21
+ - 100000.0
22
+ - - policy
23
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
ppo-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c55054d908ec2592d008671ee5dba834ecf4e0cd95ab9daf590b116710b6d8
3
+ size 139276
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb21ab22c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb21ab22cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb21ab22d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb21ab22dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb21ab22e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb21ab22ef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb21ab22f80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb21ab23010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb21ab230a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb21ab23130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb21ab231c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb21ab23250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb21ab14c00>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 52736,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 0,
28
+ "action_noise": null,
29
+ "start_time": 1692303699326410655,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "tensorboard_log": null,
35
+ "_last_obs": null,
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.47263999999999995,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+AAAAAAACMAWyUS36MAXSUR0AO5KDkELYxdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0AO7p5eJHiFdX2UKGgGR0BgQAAAAAAAaAdLgmgIR0AP8Djin5zpdX2UKGgGR0BhwAAAAAAAaAdLjmgIR0AQP+98JD3NdX2UKGgGR0Bi4AAAAAAAaAdLl2gIR0AQRUhmoR7JdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0AQjPdEb5uZdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0AQhzDGcWj5dX2UKGgGR0BiAAAAAAAAaAdLkGgIR0AQkb2lEZzgdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0AQzOE/SpirdX2UKGgGR0BmoAAAAAAAaAdLtWgIR0ARD+glF+d9dX2UKGgGR0BhIAAAAAAAaAdLiWgIR0ARE8ZDRc/udX2UKGgGR0BlwAAAAAAAaAdLrmgIR0ARpBeHBUJfdX2UKGgGR0BkgAAAAAAAaAdLpGgIR0ARooPTXrdFdX2UKGgGR0BpgAAAAAAAaAdLzGgIR0ASatozvZyudX2UKGgGR0BsIAAAAAAAaAdL4WgIR0ASdHlOoHcDdX2UKGgGR0BogAAAAAAAaAdLxGgIR0ASsT/Q0GeMdX2UKGgGR0BvwAAAAAAAaAdL/mgIR0AS8zrNW2gGdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0ATNgOSW7e3dX2UKGgGR0BoAAAAAAAAaAdLwGgIR0ATQ5uIhyKfdX2UKGgGR0B00AAAAAAAaAdNTQFoCEdAE0VCXyAhCHV9lChoBkdAYuAAAAAAAGgHS5doCEdAFAmig00m+nV9lChoBkdAaoAAAAAAAGgHS9RoCEdAFBfjS5RTCXV9lChoBkdAbGAAAAAAAGgHS+NoCEdAFF3ocJdB0XV9lChoBkdAecAAAAAAAGgHTZwBaAhHQBSWRzRx95R1fZQoaAZHQGTAAAAAAABoB0umaAhHQBSUg0TDfm91fZQoaAZHQGMgAAAAAABoB0uZaAhHQBSat1ZDArR1fZQoaAZHQGrgAAAAAABoB0vXaAhHQBTX8n/kvK51fZQoaAZHQGeAAAAAAABoB0u8aAhHQBTlCLMs6JZ1fZQoaAZHQG1gAAAAAABoB0vraAhHQBXzneSB9Th1fZQoaAZHQGXAAAAAAABoB0uuaAhHQBX5DArQPZt1fZQoaAZHQGugAAAAAABoB0vdaAhHQBX6/7BO58V1fZQoaAZHQGYgAAAAAABoB0uxaAhHQBYAhbGFSKp1fZQoaAZHQGpgAAAAAABoB0vTaAhHQBY5R8+iaiN1fZQoaAZHQGVgAAAAAABoB0uraAhHQBY2hRIjGDN1fZQoaAZHQGlgAAAAAABoB0vLaAhHQBY6K1og3cZ1fZQoaAZHQGdAAAAAAABoB0u6aAhHQBaBPCVKPGR1fZQoaAZHQGqAAAAAAABoB0vUaAhHQBfYO+ZgG8p1fZQoaAZHQG3gAAAAAABoB0vvaAhHQBhcHnlnyup1fZQoaAZHQHGQAAAAAABoB00ZAWgIR0AYYF1SwW30dX2UKGgGR0BvAAAAAAAAaAdL+GgIR0AYXgZTAFgVdX2UKGgGR0BqoAAAAAAAaAdL1WgIR0AYYC1Z1V5sdX2UKGgGR0BxkAAAAAAAaAdNGQFoCEdAGGvStvGZNXV9lChoBkdAcUAAAAAAAGgHTRQBaAhHQBhwiaAnUlR1fZQoaAZHQHTgAAAAAABoB01OAWgIR0AY6n5zo2XLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAH47v5P/JeXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQB/hmoR7JGR1fZQoaAZHQH9AAAAAAABoB030AWgIR0Af5cIJJGvwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAH+NiYsunM3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQB/ls+FDfFd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AgE1eBxxT9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIBYNqgyuZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCA5HPNVzZJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ah2o99tuUEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIh1PWQOnVHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCIfYJ3PiUB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AiHjT8YQ8PdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIh9/8VHnU3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCIlWCEpRXR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AiQYb83uNQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAImU6o2n89HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCQG0G/vfCR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AkLv3JxNqQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJEqxLTQVsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCRJhttQ9A51fZQoaAZHQH9AAAAAAABoB030AWgIR0AkSrnTy8SPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJFCe/Yao/HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCRTFS88La51fZQoaAZHQH9AAAAAAABoB030AWgIR0Akd0K7ZnL8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJhc0UGmk33V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCZYe7tiQT51fZQoaAZHQH9AAAAAAABoB030AWgIR0AmWohpxm03dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJllY+0PYnXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCZadBjWkJt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ameq+ajN6gdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJn0zTF2mpHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCagYxcmjTN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoN82Jiy6ddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKHmuTzND+nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCh7vd/J/5N1fZQoaAZHQH9AAAAAAABoB030AWgIR0Aoeo60Y0l7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKHu1WsA/93V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCiBqTKT0QN1fZQoaAZHQH9AAAAAAABoB030AWgIR0Aonzq8lHBldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKMLUb1h9cHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpeaUiY9gZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqhbQkX1rZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKoe6y0KJEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqGiaiKziV1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqoO9WZJCjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKqbah6By0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqpU70WdmR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqzS/j81n/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALgRx1gYxcnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5Hd0q6OHZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuSYoAn2IwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALkhaC+UQkHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5Jguyu6mR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuaLtu1ndwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALmtZNfw7T3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC6OFi8WbgF1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4112,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True]",
60
+ "bounded_above": "[ True True True True]",
61
+ "_shape": [
62
+ 4
63
+ ],
64
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
65
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
66
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
67
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "2",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 32,
81
+ "gamma": 0.98,
82
+ "gae_lambda": 0.8,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 256,
87
+ "n_epochs": 20,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVaAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTTQBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b3231e1395daacc5e73510e7867cc8bfe387d40025594c723cf66823d29cfeb
3
+ size 82425
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee6c15ac92fac7483a369f550957bc05131ecab99349fb9e0eb2238d08f79d72
3
+ size 40641
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 # 85-Ubuntu SMP Fri Jul 7 15:25:09 UTC 2023
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0.dev20230420+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.0
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3733450166b03e25ae26f120e8aa709612db5937afa388963f9361885322aac
3
+ size 53956
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T22:24:02.976798"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:436d7609cce400aba604a73323364ac7af347b23648ccfb40837411b5d557844
3
+ size 7665